Publications by authors named "Yuri Yamazaki"

Long-distance dispersal (LDD) of seeds plays an essential role in the migration of plants to a new habitat and maintaining gene flow among geographically isolated populations. Pantropical plants with sea-drifted seeds, which have one of the largest distributions in all flowering plants, have achieved their global distribution by LDD. However, the spatiotemporal processes to achieve the wide distribution and the role of LDD in it have not yet been elucidated.

View Article and Find Full Text PDF

The microminipig is one of the smallest minipigs that has emerged as a possible experimental animal model, because it shares many anatomical and/or physiological similarities with humans, including the coronary artery distribution in the heart, the digestive physiology, the kidney size and its structure, and so on. However, information on gene expression profiles, including those on drug-metabolizing phase I and II enzymes, in the microminipig is limited. Therefore, the aim of the present study was to identify transcripts in microminipig livers and to determine gene expression profiles.

View Article and Find Full Text PDF

The bacterial RNA polymerase (RNAP) is an ideal target for the development of antimicrobial agents against drug-resistant bacteria. Especially, the switch region within RNAP has been considered as an attractive binding site for drug discovery. Here, we designed and synthesized a series of novel hybrid-type inhibitors of bacterial RNAP.

View Article and Find Full Text PDF

We describe here the design, synthesis and biological evaluation of a series of molecules toward the development of novel peptidomimetic inhibitors of SARS-CoV 3CL(pro). A docking study involving binding between the initial lead compound 1 and the SARS-CoV 3CL(pro) motivated the replacement of a thiazole with a benzothiazole unit as a warhead moiety at the P1' site. This modification led to the identification of more potent derivatives, including 2i, 2k, 2m, 2o, and 2p, with IC(50) or K(i) values in the submicromolar to nanomolar range.

View Article and Find Full Text PDF

Plinabulin (1) is a potent anti-microtubule agent, however, its low water solubility has to be improved for the advantage in pharmacokinetics and chemotherapy. In this report, the replaceable water-solubilizing moiety of the water-soluble prodrug of plinabulin (1) was investigated. The properties of the water-soluble prodrugs of plinabulin (1), in which the water-solubilizing part was replaced with a new functionality, were evaluated.

View Article and Find Full Text PDF

KPU-105 (4), a potent anti-microtubule agent that contains a benzophenone was derived from the diketopiperazine-type vascular disrupting agent (VDA) plinabulin 3, which displays colchicine-like tubulin depolymerization activity. To develop derivatives with more potent anti-microtubule and cytotoxic activities, we further modified the benzophenone moiety of 4. Accordingly, we obtained a 4-fluorobenzophenone derivative 16j that inhibited tumor cell growth in vitro with a subnanomolar IC(50) value against HT-29 cells (IC(50)=0.

View Article and Find Full Text PDF

A series of (+)-negamycin 1 analogues were synthesized, and their readthrough-promoting activity was evaluated for nonsense mutations in Duchenne muscular dystrophy (DMD). A structure-activity relationship study indicated that 11b was the most potent drug candidate. Immunohistochemical analyses suggested that treatment with 11b restored dystrophin expression in mdx mice, a DMD mouse model.

View Article and Find Full Text PDF

Plinabulin (11, NPI-2358) is a potent microtubule-targeting agent derived from the natural diketopiperazine "phenylahistin" (1) with a colchicine-like tubulin depolymerization activity. Compound 11 was recently developed as VDA and is now under phase II clinical trials as an anticancer drug. To develop more potent antimicrotubule and cytotoxic derivatives based on the didehydro-DKP skeleton, we performed further modification on the tert-butyl or phenyl groups of 11, and evaluated their cytotoxic and tubulin-binding activities.

View Article and Find Full Text PDF

A new bioactive photoaffinity probe KPU-252-B1 (4) possessing a biotin tag on the oxazole ring of a potent plinabulin derivative KPU-244 (2) was synthesized via the Cu(I)-catalyzed Huisgen's cycloaddition reaction to understand the precise binding mode of the diketopiperazine-based anti-microtubule agent plinabulin on tubulin. Probe 4 showed significant binding affinity toward tubulin and cytotoxicity against an HT-29 cells. A photoaffinity labeling study suggested that probe 4 specifically recognizes tubulin at a binding site that binds plinabulin or colchicine, most likely near or at the colchicine binding site, which is located at the interfacial region formed by α-and β-tubulin association.

View Article and Find Full Text PDF

Plinabulin (1, NPI-2358), a potent microtubule-targeting agent derived from the natural diketopiperazine 'phenylahistin' with a colchicine-like tubulin depolymerization activity, is an anticancer agent undergoing Phase II clinical trials in four countries including the United States. In order to understand the precise binding mode of plinabulin with tubulin, a new bioactive biotin-tagged photoaffinity probe 4 (KPU-244-B3) was designed and synthesized. Probe 4 showed significant binding affinity to tubulin in a binding assay, and selectively bound to tubulin in an HT-1080 cell lysate without photo-irradiation.

View Article and Find Full Text PDF

Introduction: Non-specific adsorption (NSA) of drugs to plastic or glass containers used in clinical use is well known, but methods for reducing NSA have been rarely reported. We assessed the NSA to various containers and then investigated methods to reduce NSA.

Methods: Probe drugs (methotrexate, warfarin, chloroquine, propranolol, verapamil, digoxin and paclitaxel) dissolved in water were incubated in conventional or low-adsorption containers for 4h at 4 degrees C and the NSA was determined by HPLC.

View Article and Find Full Text PDF

Introduction: The Caco-2 permeability assay is widely used for lead optimization in drug discovery. A 3 to 5-day system using a 24-well plate and a 10 to 21-day system using a 96-well plate have been established. Here, we modified the assay system to provide a ready-to-use Caco-2 cell monolayer using a 96-well plate in just 4 days.

View Article and Find Full Text PDF

NPI-2358 (1) is a potent antimicrotubule agent that was developed from a natural diketopiperazine, phenylahistin, which is currently in Phase I clinical trials as an anticancer drug. To understand the precise recognition mechanism of tubulin by this agent, we focused on its potent derivative, KPU-244 (2), which has been modified with a photoreactive benzophenone structure, and biotin-tagged KPU-244 derivatives (3 and 4), which were designed and synthesized for tubulin photoaffinity labeling. Introduction of the biotin structure at the p'-position of the benzophenone ring in 2 exhibited reduced, but significant biological activities with tubulin binding, tubulin depolymerization and cytotoxicity in comparison to the parent KPU-244.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni3g8o9titq32ssme2hcg2vmutj7vnb68): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once