Publications by authors named "Yuri Y Gleba"

Plant viral vectors delivered by Agrobacterium are the basis of several manufacturing processes that are currently in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, protein nanoparticles such as virus-like particles (VLPs), and other protein and protein-RNA scaffolds. Viral vectors delivered by agrobacterial T-DNA transfer (magnifection) have also become important tools in research. In recent years, essential advances have been made both in the development of second-generation vectors designed using the 'deconstructed virus' approach, as well as in the development of upstream manufacturing processes that are robust and fully scalable.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered that when plants are wounded, they produce pectin methylesterase (PME) that leads to the release of methanol, which aids in communication between plants and boosts their resistance to bacteria and viruses.
  • Methanol, typically seen as harmful to humans due to its conversion to formaldehyde, is also recognized as a natural substance in healthy humans, raising questions about its potential functions in human metabolism.
  • The study used experiments with HeLa cells and mice to identify methanol-responsive genes and found that methanol from plant sources could influence gene expression in both human and animal models, suggesting a complex signaling interaction between plants and animals.
View Article and Find Full Text PDF

Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants ("emitters") on the defensive reactions of neighboring "receiver" plants.

View Article and Find Full Text PDF

Background: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb), trastuzumab (Herceptin). A course of treatment, however, is expensive and requires repeated administrations of the mAb.

View Article and Find Full Text PDF

The synthesis and subsequent nuclear export of non-coding RNA (ncRNA) directed by RNA polymerase (Pol) II is very sensitive to abiotic and biotic external stimuli including pathogen challenges. To assess whether stress-induced ncRNAs may suppress the nuclear export of mRNA, we exploited the ability of Agrobacterium tumefaciens to co-deliver Pol I, II and III promoter-based vectors for the transcription of short (s) ncRNAs, GFP mRNA or genomic RNA of plant viruses (Tobacco mosaic virus, TMV; or Potato virus X, PVX) into the nucleus of Nicotiana benthamiana cells. We showed that, in contrast to Pol I- and Pol III-derived sncRNAs, all tested Pol II-derived sncRNAs (U6 RNA, tRNA or artificial RNAs) resulted in decreased expression of GFP and host mRNA.

View Article and Find Full Text PDF

Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface.

View Article and Find Full Text PDF

Co-agroinjection of Nicotiana benthamiana leaves with the pectin methylesterase (proPME) gene and the TMV:GFP vector resulted in a stimulation of virus-induced RNA silencing (inhibition of GFP production, virus RNA degradation, stimulation of siRNAs production). Conversely, co-expression of TMV:GFP with either antisense PME construct or with enzymatically inactive proPME restored synthesis of viral RNA. Furthermore, expression of proPME enhanced the GFP transgene-induced gene silencing accompanied by relocation of the DCL1 protein from nucleus to the cytoplasm and activation of siRNAs and miRNAs production.

View Article and Find Full Text PDF

We report that unprocessed tobacco pectin methylesterase (PME) contains N-terminal pro-sequence including the transmembrane (TM) domain and spacer segment preceding the mature PME. The mature portion of PME was replaced by green fluorescent protein (GFP) gene and various deletion mutants of pro-sequence fused to GFP were cloned into binary vectors and agroinjected in Nicotiana benthamiana leaves. The PME pro-sequence delivered GFP to the cell wall (CW).

View Article and Find Full Text PDF

Morphological characteristics were studied in cytoplasmic male sterile (CMS) cybrids possessing the tobacco nuclear genome, Hyoscyamus niger plastome and recombinant mitochondria. After backcrosses with tobacco, new flower modifications were found, including: conversions of stamens into branched filamentous structures; alterations in the shape of petals and the corolla limb; and high degrees of reduction in most flower organs. Vegetative alterations (leaf elongation and stem branching) occurred in some cybrids.

View Article and Find Full Text PDF

The internal ribosome entry sites (IRES), IRES(CP,148)(CR) and IRES(MP,75)(CR), precede the coat protein (CP) and movement protein (MP) genes of crucifer-infecting tobamovirus (crTMV), respectively. In the present work, we analyzed the activity of these elements in transgenic plants and other organisms. Comparison of the relative activities of the crTMV IRES elements and the IRES from an animal virus--encephalomyocarditis virus--in plant, yeast, and HeLa cells identified the 148-nt IRES(CP,148)(CR) as the strongest element that also displayed IRES activity across all kingdoms.

View Article and Find Full Text PDF