Background: Using human brain microvascular endothelial cells (HBMECs) as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB) we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain). In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs) known as protease activated receptors (PARs) that might be implicated in calcium signaling by African trypanosomes.
Methodology/principal Findings: Using RNA interference (RNAi) we found that in vitro PAR-2 gene (F2RL1) expression in HBMEC monolayers could be reduced by over 95%.
Escherichia coli K1 invasion of microvascular endothelial cells of human brain (HBMEC) is required for E. coli penetration into the central nervous system, but the microbial-host interactions that are involved in this invasion of HBMEC remain incompletely understood. We have previously shown that FimH, one of the E.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a structural and functional barrier that regulates the passage of molecules into and out of the brain to maintain the neural microenvironment. We have previously developed the in vitro BBB model with human brain microvascular endothelial cells (HBMEC). However, in vivo HBMEC are shown to interact with astrocytes and also exposed to shear stress through blood flow.
View Article and Find Full Text PDFIn this study we investigated why bloodstream forms of Trypanosoma brucei gambiense cross human brain microvascular endothelial cells (BMECs), a human blood-brain barrier (BBB) model system, at much greater efficiency than do T. b. brucei.
View Article and Find Full Text PDFUsing an in vitro model of the human blood-brain barrier consisting of human brain microvascular endothelial cells we recently demonstrated that Trypanosoma brucei gambiense bloodstream-forms efficiently cross these cells via a paracellular route while Trypanosoma brucei brucei crosses these cells poorly. Using a combination of techniques that include fluorescence activated cell sorting, confocal and electron microscopy, we now show that some T.b.
View Article and Find Full Text PDFNeurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B.
View Article and Find Full Text PDFThe neurological manifestations of sleeping sickness in man are attributed to the penetration of the blood-brain barrier (BBB) and invasion of the central nervous system by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, how African trypanosomes cross the BBB remains an unresolved issue. We have examined the traversal of African trypanosomes across the human BBB using an in vitro BBB model system constructed of human brain microvascular endothelial cells (BMECs) grown on Costar Transwell inserts.
View Article and Find Full Text PDFThrombin and related protease-activated receptors 1, 2, 3, and 4 (PAR1-4) play a multifunctional role in many types of cells including endothelial cells. Here, using RT-PCR and immunofluorescence staining, we showed for the first time that PAR1-4 are expressed on primary human brain microvascular endothelial cells (HBMEC). Digital fluorescence microscopy and fura 2 were used to monitor intracellular Ca2+ concentration ([Ca2+]i) changes in response to thrombin and PAR1-activating peptide (PAR1-AP) SFFLRN.
View Article and Find Full Text PDF