Publications by authors named "Yuri V Khotyaintsev"

We use multispacecraft Magnetospheric Multiscale observations to investigate electric fields and ion reflection at a nonstationary collisionless perpendicular plasma shock. We identify subproton scale (5-10 electron inertial lengths) large-amplitude normal electric fields, balanced by the Hall term (J×B/ne), as a transient feature of the shock ramp related to nonstationarity (rippling). The associated electrostatic potential, comparable to the energy of the incident solar wind protons, decelerates incident ions and reflects a significant fraction of protons, resulting in more efficient shock-drift acceleration than a stationary planar shock.

View Article and Find Full Text PDF

We investigate turbulence in magnetic reconnection jets in the Earth's magnetotail using data from the Magnetospheric Multiscale spacecraft. We show that signatures of a limited inertial range are observed in many reconnection jets. The observed turbulence develops on the timescale of a few ion gyroperiods, resulting in intermittent multifractal energy cascade from the characteristic scale of the jet down to the ion scales.

View Article and Find Full Text PDF

We present a statistical analysis of ion distributions in magnetic reconnection jets using data from the Magnetospheric Multiscale spacecraft. Compared with the quiet plasma in which the jet propagates, we often find anisotropic and non-Maxwellian ion distributions in the plasma jets. We observe magnetic field fluctuations associated with unstable ion distributions, but the wave amplitudes are not large enough to scatter ions during the observed travel time of the jet.

View Article and Find Full Text PDF

We report observations of electromagnetic electron holes (EHs). We use multispacecraft analysis to quantify the magnetic field contributions of three mechanisms: the Lorentz transform, electron drift within the EH, and Cherenkov emission of whistler waves. The first two mechanisms account for the observed magnetic fields for slower EHs, while for EHs with speeds approaching half the electron Alfvén speed, whistler waves excited via the Cherenkov mechanism dominate the perpendicular magnetic field.

View Article and Find Full Text PDF

Collisionless shocks are ubiquitous throughout the universe: around stars, supernova remnants, active galactic nuclei, binary systems, comets, and planets. Key information is carried by electromagnetic emissions from particles accelerated by high Mach number collisionless shocks. These shocks are intrinsically nonstationary, and the characteristic physical scales responsible for particle acceleration remain unknown.

View Article and Find Full Text PDF

The description of the local turbulent energy transfer and the high-resolution ion distributions measured by the Magnetospheric Multiscale mission together provide a formidable tool to explore the cross-scale connection between the fluid-scale energy cascade and plasma processes at subion scales. When the small-scale energy transfer is dominated by Alfvénic, correlated velocity, and magnetic field fluctuations, beams of accelerated particles are more likely observed. Here, for the first time, we report observations suggesting the nonlinear wave-particle interaction as one possible mechanism for the energy dissipation in space plasmas.

View Article and Find Full Text PDF

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.

View Article and Find Full Text PDF

We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction.

View Article and Find Full Text PDF

We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization.

View Article and Find Full Text PDF

Lower hybrid drift waves (LHDWs) are commonly observed at plasma boundaries in space and laboratory, often having the strongest measured electric fields within these regions. We use data from two of the Cluster satellites (C3 and C4) located in Earth's magnetotail and separated by a distance of the order of the electron gyroscale. These conditions allow us, for the first time, to make cross-spacecraft correlations of the LHDWs and to determine the phase velocity and wavelength of the LHDWs.

View Article and Find Full Text PDF