Publications by authors named "Yuri Simeonov"

A 3D range-modulator (RM), optimized for a single energy and a specific target shape, is a promising and viable solution for the ultra-fast dose delivery in particle therapy. The aim of this work was to investigate the impact of potential beam and modulator misalignments on the dose distribution. Moreover, the FLUKA Monte Carlo model, capable of simulating 3D RMs, was adjusted and validated for the 250 MeV single-energy proton irradiation from a Varian ProBeam system.

View Article and Find Full Text PDF

Objective: A favorable effect of ultra-high dose rate (FLASH) radiation on normal tissue-sparing has been indicated in several preclinical studies. In these studies, the adverse effects of radiation damage were reduced without compromising tumor control. Most studies of proton FLASH investigate these effects within the entrance of a proton beam.

View Article and Find Full Text PDF

The purpose of this work was to develop and manufacture a 3D range-modulator (3D RM) for a complex target contour for scanned proton therapy. The 3D RM is considered to be a viable technique for the very fast dose application in patient-specific tumors with only one fixed energy. The RM was developed based on a tumor from a patient CT and manufactured with high-quality 3D printing techniques with both polymer resin and aluminum.

View Article and Find Full Text PDF

Purpose: Three-dimensional (3D) dosimetry is a necessity to validate patient-specific treatment plans in particle therapy as well as to facilitate the development of novel treatment modalities. Therefore, a vendor-agnostic water phantom was developed and verified to measure high resolution 3D dose distributions.

Methods: The system was experimentally validated at the Marburger Ionenstrahl-Therapiezentrum using two ionization chamber array detectors (PTW Octavius 1500XDR and 1000P) with 150.

View Article and Find Full Text PDF

This paper introduces the concept of a 2D range-modulator as a static device for generating spread-out Bragg peaks at very small distances to the target. The 2D range-modulator has some distinct advantages that can be highly useful for different research projects in particle therapy facilities. Most importantly, it creates an instantaneous, quasi-static irradiation field with only one energy, thus decreasing irradiation time tremendously.

View Article and Find Full Text PDF

Ionization chamber-based dosimetry for carbon-ion beams still shows a significantly higher standard uncertainty than high-energy photon dosimetry. This is mainly caused by the high standard uncertainty of the correction factor for beam quality [Formula: see text]. Due to a lack of experimental data, the given values for [Formula: see text] are based on theoretical calculations.

View Article and Find Full Text PDF

We present a new facility dedicated to radiobiology research, which has been implemented at the Trento Proton Therapy Centre (Italy). A dual-ring double scattering system was designed to produce irradiation fields of two sizes (i.e.

View Article and Find Full Text PDF

The purpose of this work was to design and manufacture a 3D range-modulator for scanned particle therapy. The modulator is intended to create a highly conformal dose distribution with only one fixed energy, simultaneously reducing considerably the treatment time. As a proof of concept, a 3D range-modulator was developed for a spherical target volume with a diameter of 5 cm, placed at a depth of 25 cm in a water phantom.

View Article and Find Full Text PDF

Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material.

View Article and Find Full Text PDF

A ripple filter (RiFi)-also called mini-ridge filter-is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm.

View Article and Find Full Text PDF