Motor proteins convert chemical energy into work, thereby generating persistent motion of cellular and subcellular objects. The velocities of motor proteins as a function of opposing loads have been previously determined in vitro for single motors. These single molecule "force-velocity curves" have been useful for elucidating motor kinetics and for estimating motor performance under physiological loads due to, for example, the cytoplasmic drag force on transported organelles.
View Article and Find Full Text PDFPrimary neuron cultures are widely used in research due to the ease and usefulness of observing individual cells. Therefore, it is vital to understand how variations in culture conditions may affect neuron physiology. One potential variation for cultured neurons is a change in intracellular transport.
View Article and Find Full Text PDF