Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015).
View Article and Find Full Text PDFAlthough microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities.
View Article and Find Full Text PDFRecently, it has been demonstrated that uncoupling protein-1 (UCP1)-expressing white adipocytes (brown-like adipocytes) are important for energy expenditure in white adipose tissue (WAT), in which energy expenditure decreases under obese conditions. However, the relationship between the induction of brown-like adipocytes and the decrease in energy expenditure in obese WAT remains to be elucidated. Here, we show that proinflammatory cytokines derived from activated macrophages suppress the induction of UCP1 promoter activity and mRNA expression via an extracellular signal-related kinase (ERK) in white adipocytes.
View Article and Find Full Text PDF