Scoring is a challenging step in protein-protein docking, where typically thousands of solutions are generated. In this study, we ought to investigate the contribution of consensus-rescoring, as introduced by Oliva et al. (2013) with the CONSRANK method, where the set of solutions is used to build statistics in order to identify recurrent solutions.
View Article and Find Full Text PDFBackground: Protein-protein interactions (PPIs) play several roles in living cells, and computational PPI prediction is a major focus of many researchers. The three-dimensional (3D) structure and binding surface are important for the design of PPI inhibitors. Therefore, rigid body protein-protein docking calculations for two protein structures are expected to allow elucidation of PPIs different from known complexes in terms of 3D structures because known PPI information is not explicitly required.
View Article and Find Full Text PDFAnalysis of protein-protein interaction networks has revealed the presence of proteins with multiple interaction ligand proteins, such as hub proteins. For such proteins, multiple ligands would be predicted as interacting partners when predicting all-to-all protein-protein interactions (PPIs). In this work, to obtain a better understanding of PPI mechanisms, we focused on protein interaction surfaces, which differ between protein pairs.
View Article and Find Full Text PDFAdv Biochem Eng Biotechnol
August 2017
Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this.
View Article and Find Full Text PDFSummary: The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling.
View Article and Find Full Text PDFBackground: Elucidation of protein-protein interaction (PPI) networks is important for understanding disease mechanisms and for drug discovery. Tertiary-structure-based in silico PPI prediction methods have been developed with two typical approaches: a method based on template matching with known protein structures and a method based on de novo protein docking. However, the template-based method has a narrow applicable range because of its use of template information, and the de novo docking based method does not have good prediction performance.
View Article and Find Full Text PDFBackground: Protein-protein interaction (PPI) plays a core role in cellular functions. Massively parallel supercomputing systems have been actively developed over the past few years, which enable large-scale biological problems to be solved, such as PPI network prediction based on tertiary structures.
Results: We have developed a high throughput and ultra-fast PPI prediction system based on rigid docking, "MEGADOCK", by employing a hybrid parallelization (MPI/OpenMP) technique assuming usages on massively parallel supercomputing systems.
Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used.
View Article and Find Full Text PDFThe elucidation of protein-protein interaction (PPI) networks is important for understanding cellular structure and function and structure-based drug design. However, the development of an effective method to conduct exhaustive PPI screening represents a computational challenge. We have been investigating a protein docking approach based on shape complementarity and physicochemical properties.
View Article and Find Full Text PDFCore elements of cell regulation are made up of protein-protein interaction (PPI) networks. However, many parts of the cell regulatory systems include unknown PPIs. To approach this problem, we have developed a computational method of high-throughput PPI network prediction based on all-to-all rigid-body docking of protein tertiary structures.
View Article and Find Full Text PDFGenome Inform
December 2013
Elucidating protein-RNA interactions (PRIs) is important for understanding many cellular systems. We developed a PRI prediction method by using a rigid-body protein-RNA docking calculation with tertiary structure data. We evaluated this method by using 78 protein-RNA complex structures from the Protein Data Bank.
View Article and Find Full Text PDFThe CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community-wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting that there may be important physical chemistry missing in the energy calculations.
View Article and Find Full Text PDFWe propose a computational screening system of protein-protein interactions using tertiary structure data. Our system combines all-to-all protein docking and clustering to find interacting protein pairs. We tuned our prediction system by applying various parameters and clustering algorithms and succeeded in outperforming previous methods.
View Article and Find Full Text PDFArtif Intell Med
October 2007
Objective: Cell motility and chemotaxis play a role in the virulence of pathogenic bacteria, such as escape from host immune responses. Escherichia coli chemotaxis provides a well-characterized model system for the bacterial chemotaxis network. Two features of E.
View Article and Find Full Text PDF