Publications by authors named "Yuri Lebedev"

T-cell receptor (TR) diversity of the variable domains is generated by recombination of both the alpha (TRA) and beta (TRB) chains. The textbook process of TRB chain production starts with TRBD and TRBJ gene rearrangement, followed by the rearrangement of a TRBV gene to the partially rearranged D-J gene. Unsuccessful V-D-J TRB rearrangements lead to apoptosis of the cell.

View Article and Find Full Text PDF

The Ti-18Zr-15Nb shape memory alloys are a new material for medical implants. The regularities of phase transformations during heating of this alloy in the coarse-grained quenched state and the nanostructured state after high-pressure torsion have been studied. The specimens in quenched state (Q) and HPT state were annealed at 300-550 °C for 0.

View Article and Find Full Text PDF

High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies are still challenging.

View Article and Find Full Text PDF

The development and implementation of vaccines have been growing exponentially, remaining one of the major successes of healthcare over the last century. Nowadays, active regular immunizations prevent epidemics of many viral diseases, including tick-borne encephalitis (TBE). Along with the generation of virus-specific antibodies, a highly effective vaccine should induce T cell responses providing long-term immune defense.

View Article and Find Full Text PDF

Retroelements (RE) have been proposed as important players in cancerogenesis. Different cancer types are characterized by a different level of tumor-specific RE insertions. In previous studies, small cohorts of hematological malignancies, such as acute myeloid leukemia, multiple myeloma, and chronic lymphocytic leukemia have been characterized by a low level of RE insertional activity.

View Article and Find Full Text PDF

Microwave discharges in dielectric liquids are a relatively new area of plasma physics and plasma application. This review cumulates results on microwave discharges in wide classes of liquid hydrocarbons (alkanes, cyclic and aromatic hydrocarbons). Methods of microwave plasma generation, composition of gas products and characteristics of solid carbonaceous products are described.

View Article and Find Full Text PDF

COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However, neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T-cell response nor the diversity of resulting immune memory is well understood.

View Article and Find Full Text PDF

Background: Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies are repressed in most normal tissues by various cellular mechanisms.

View Article and Find Full Text PDF

The diverse repertoire of T-cell receptors (TCR) plays a key role in the adaptive immune response to infections. Using TCR alpha and beta repertoire sequencing for T-cell subsets, as well as single-cell RNAseq and TCRseq, we track the concentrations and phenotypes of individual T-cell clones in response to primary and secondary yellow fever immunization - the model for acute infection in humans - showing their large diversity. We confirm the secondary response is an order of magnitude weaker, albeit ∼10 days faster than the primary one.

View Article and Find Full Text PDF

Background And Aims: Intestinal inflammation in inflammatory bowel diseases [IBD] is thought to be T cell mediated and therefore dependent on the interaction between the T cell receptor [TCR] and human leukocyte antigen [HLA] proteins expressed on antigen presenting cells. The collection of all TCRs in one individual, known as the TCR repertoire, is characterised by enormous diversity and inter-individual variability. It was shown that healthy monozygotic [MZ] twins are more similar in their TCR repertoire than unrelated individuals.

View Article and Find Full Text PDF

Rearrangements of T- and B-cell receptor (TCR and BCR) genes are useful markers for clonality assessment as well as for minimal residual disease (MRD) monitoring during the treatment of haematological malignancies. Currently, rearrangements of three out of four TCR and all BCR loci are used for this purpose. The fourth TCR gene, TRA, has not been used so far due to the lack of a method for its rearrangement detection in genomic DNA.

View Article and Find Full Text PDF

Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine).

View Article and Find Full Text PDF

T cell receptor (TCR) repertoire data contain information about infections that could be used in disease diagnostics and vaccine development, but extracting that information remains a major challenge. Here we developed a statistical framework to detect TCR clone proliferation and contraction from longitudinal repertoire data. We applied this framework to data from three pairs of identical twins immunized with the yellow fever vaccine.

View Article and Find Full Text PDF

Background: There is increasing evidence that the transpositional activity of retroelements (REs) is not limited to germ line cells, but often occurs in tumor and normal somatic cells. Somatic transpositions were found in several human tissues and are especially typical for the brain. Several computational and experimental approaches for detection of somatic retroelement insertions was developed in the past few years.

View Article and Find Full Text PDF

Diverse repertoires of hypervariable immunoglobulin receptors (TCR and BCR) recognize antigens in the adaptive immune system. The development of immunoglobulin receptor repertoire sequencing methods makes it possible to perform repertoire-wide disease association studies of antigen receptor sequences. We developed a statistical framework for associating receptors to disease from only a small cohort of patients, with no need for a control cohort.

View Article and Find Full Text PDF

Vaccination against influenza is widely used to protect against seasonal flu epidemic although its effectiveness is debated. Here we performed deep quantitative T cell receptor repertoire profiling in peripheral blood of a healthy volunteer in response to trivalent subunit influenza vaccine. We did not observe significant rebuilding of peripheral blood T cell receptors composition in response to vaccination.

View Article and Find Full Text PDF

Retroelement activity is a common source of polymorphisms in human genome. The mechanism whereby retroelements contribute to the intraindividual genetic heterogeneity by inserting into the DNA of somatic cells is gaining increasing attention. Brain tissues are suspected to accumulate genetic heterogeneity as a result of the retroelements somatic activity.

View Article and Find Full Text PDF

Adaptive immunity in humans is provided by hypervariable Ig-like molecules on the surface of B and T cells. The final set of these molecules in each organism is formed under the influence of two forces: individual genetic traits and the environment, which includes the diverse spectra of alien and self-antigens. Here we assess the impact of individual genetic factors on the formation of the adaptive immunity by analyzing the T-cell receptor (TCR) repertoires of three pairs of monozygous twins by next-generation sequencing.

View Article and Find Full Text PDF

The relationship between maternal and child immunity has been actively studied in the context of complications during pregnancy, autoimmune diseases, and haploidentical transplantation of hematopoietic stem cells and solid organs. Here, we have for the first time used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of T cell receptor (TCR) repertoires for peripheral blood samples of three mothers and their six children. Advanced technology allowed accurate identification of 5 × 10(5) to 2 × 10(6) TCR beta clonotypes per individual.

View Article and Find Full Text PDF

Autologous haematopoietic stem cell transplantation is highly efficient for the treatment of systemic autoimmune diseases, but its consequences for the immune system remain poorly understood. Here, we describe an optimized RNA-based technology for unbiased amplification of T cell receptor beta-chain libraries and use it to perform the first detailed, quantitative tracking of T cell clones during 10 months after transplantation. We show that multiple clones survive the procedure, contribute to the immune response to activated infections, and form a new skewed and stable T cell receptor repertoire.

View Article and Find Full Text PDF

Increasing evidence points to a role for killer immunoglobulin-like receptors (KIRs) in the development of autoimmune diseases. In particular, a positive association of KIR3DS1 (activating receptor) and a negative association of KIR3DL1 (inhibitory receptor) alleles with ankylosing spondylitis (AS) have been reported by several groups. However, none of the studies analyzed these associations in the context of functionality of polymorphic KIR3DL1.

View Article and Find Full Text PDF

Expressed sequence tags (ESTs) represent 500-1000-bp-long sequences corresponding to mRNAs derived from different sources (cell lines, tissues, etc.). The human EST database contains over 8,000,000 sequences, with over 4,000,000,000 total nucleotides.

View Article and Find Full Text PDF

Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs) comprise approximately 5% of the human genome. The LTRs of ERVs contain many regulatory sequences, such as promoters, enhancers, polyadenylation signals and factor-binding sites.

View Article and Find Full Text PDF

Being the most effectively transposed primate-specific SINEs, Alu elements are present in more than one million copies in the human genome and include most recently transposed subsets of AluY elements that are polymorphic in humans. Although Alu elements are commonly thought to play an essential role in shaping and functioning of primate genomes, the understanding of the impact of recent Alu insertions on human gene expression is far from being comprehensive. Here we compared hnRNA contents for allele pairs of genes heterozygous for AluY insertions in their introns in human cell lines of various origins.

View Article and Find Full Text PDF