Shape memory materials are smart materials that stand out because of several remarkable properties, including their shape memory effect. Shape memory alloys (SMAs) are largely used members of this family and have been innovatively employed in various fields, such as sensors, actuators, robotics, aerospace, civil engineering, and medicine. Many conventional, unconventional, experimental, and numerical methods have been used to study the properties of SMAs, their models, and their different applications.
View Article and Find Full Text PDFThis paper presents a novel design and development of a low-cost and multi-touch sensor based on capacitive variations. This new sensor is very flexible and easy to fabricate, making it an appropriate choice for soft robot applications. Materials (conductive ink, silicone, and control boards) used in this sensor are inexpensive and easily found in the market.
View Article and Find Full Text PDFIntroduction: Although deep brain stimulation is nowadays performed worldwide, the biomechanical aspects of electrode implantation received little attention, mainly as physicians focused on the medical aspects, such as the optimal indication of the surgical procedure, the positive and adverse effects, and the long-term follow-up. We aimed to describe electrode deformations and brain shift immediately after implantation, as it may highlight our comprehension of intracranial and intracerebral mechanics.
Materials And Methods: Sixty electrodes of 30 patients suffering from severe symptoms of Parkinson's disease and essential tremor were studied.
The flow of a dry granular material composed of spherical particles along a rotating boundary has been studied by the discrete element method (DEM). This type of flow is used, among others, as a process to spread particles. The flow consists of several phases.
View Article and Find Full Text PDF