Publications by authors named "Yuri Janssen"

Materials used as electrodes in energy storage devices have been extensively studied with solid-state NMR spectroscopy. Due to the almost ubiquitous presence of transition metals, these systems are also often magnetic. While it is well known that the presence of anisotropic bulk magnetic susceptibility (ABMS) leads to broadening of resonances under magic angle spinning, we show that for monodisperse and nonspherical particle morphologies the ABMS can also lead to considerable shifts, which vary substantially as a function of particle shape.

View Article and Find Full Text PDF

Single crystals of a new multinary chromium carbide, LaCr Al Ge C (henicosa-lanthanum octa-chromium aluminium hexa-germanium dodeca-carbide), were grown from an La-rich self flux and were characterized by single-crystal X-ray diffraction. The face-centered cubic crystal structure is composed of isolated and geometrically frustrated regular Cr tetra-hedra that are co-centered within regular C octa-hedra. These mutually separated CrC clusters are distributed throughout a three-dimensional framework of Al, Ge, and La.

View Article and Find Full Text PDF

The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios.

View Article and Find Full Text PDF

The crystal structure of the promising Li-ion battery cathode material LiFeBO(3) has been redetermined based on the results of single crystal X-ray diffraction data. A commensurate modulation that doubles the periodicity of the lattice in the a-axis direction is observed. When the structure of LiFeBO(3) is refined in the 4-dimensional superspace group C2/c(α0γ)00, with α = 1/2 and γ = 0 and with lattice parameters of a = 5.

View Article and Find Full Text PDF