Publications by authors named "Yuri Hong"

Complex coacervation plays an important role in various fields. Here, the influences of the backbone chemistry and ionic functional groups of five pairs of oppositely charged polyelectrolytes on complex coacervation were investigated. These pairs include synthetic polymers with aliphatic hydrocarbon backbones, peptides with amide bonds, and carbohydrates with glycosidic linkages.

View Article and Find Full Text PDF

Numerous biological systems contain vesicle-like biomolecular compartments without membranes, which contribute to diverse functions including gene regulation, stress response, signaling, and skin barrier formation. Coacervation, as a form of liquid-liquid phase separation (LLPS), is recognized as a representative precursor to the formation and assembly of membrane-less vesicle-like structures, although their formation mechanism remains unclear. In this study, a coacervation-driven membrane-less vesicle-like structure is constructed using two proteins, GG1234 (an anionic intrinsically disordered protein) and bhBMP-2 (a bioengineered human bone morphogenetic protein 2).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, causing progressive cognitive decline, memory impairment, and neurological deficits. Methylene blue (MB), an antioxidant, has emerged as a potential drug for the treatment of AD owing to its cognitive improvement and neuroprotective functions. Despite the small molecular size of MB, which can cross the BBB, the therapeutic effective dosage using a BBB-permeable delivery system in a specific brain localization remains unclear.

View Article and Find Full Text PDF

Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is associated with limited functional recovery. Despite advances in neuroscience, realistic therapeutic treatments for SCI remain unavailable. In this study, the effects of non-invasive ultrasound (US) treatment on behavior and inflammatory responses were evaluated in a rat model of SCI.

View Article and Find Full Text PDF

Protein tyrosine kinase 7 (PTK7), a member of the catalytically defective receptor protein tyrosine kinase family, is upregulated in various cancers including esophageal squamous cell carcinoma (ESCC). Here, we have explored the molecular mechanism of PTK7-dependent invasiveness in ESCC cells. PTK7 knockdown reduced gelatin degradation and MMP-9 secretion in cultures of ESCC TE-10 cells, and showed reduced levels of MMP9 mRNA using real-time RT-PCR and luciferase reporter assays.

View Article and Find Full Text PDF