The effects of measuring devices/sensors on improving the power quality (PQ) of electric networks are studied in this paper. In this context, improving the performance of an LCL-type grid connected to a three-phase three-wire shunt active filter (SAF) in the presence of voltage perturbations is studied. In order to ensure the high-quality performance of LCL-SAF in the presence of voltage perturbations, the robust continuous second-order sliding mode controller (2-SMC), including twisting and super-twisting controllers, and continuous higher-order sliding mode controller (C-HOSMC)-based approaches are employed.
View Article and Find Full Text PDFPlants can communicate with other plants using wireless pathways above and underground. Some examples of these underground communication pathways are: (1) mycorrhizal networks in the soil; (2) the plants' rhizosphere; (3) acoustic communication; (4) naturally grafting of roots of the same species; (5) signaling chemicals exchange between roots of plants; and (6) electrical signal transmission between plants through the soil. To avoid the possibility of communication between plants using mechanisms (1)-(5), soils in both pots with plants can be connected by Ag/AgCl or platinum wires.
View Article and Find Full Text PDFAccording to literature, electrostimulation of plants can induce plant movement, activation of ion channels, ion transport, gene expression, enzymatic system activation, electrical signaling, plant-cell damage, enhanced wound healing, and can also influence plant growth. Many plants can communicate above ground and underground between adjacent plants. Electrostimulation by square pulses induces passive electrotonic potentials propagating within and between tomato plants.
View Article and Find Full Text PDFElectrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes.
View Article and Find Full Text PDF