Publications by authors named "Yuri Abramov"

Article Synopsis
  • The nascent polypeptide-associated complex (NAC) is a crucial ribosome-associated protein involved in protein folding and sorting, and it is conserved across eukaryotic organisms.
  • Researchers have identified germline-specific NACαβ paralogs (gNACs), which have unique protein structures in their α and β subunits, particularly longer regions that may be phosphorylated.
  • The study suggests that these gNACs play a role in the coordination of protein regulation within germline cells, and there appears to be an interaction between gNACs and the commonly expressed NAC subunits that impacts organismal development.
View Article and Find Full Text PDF

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs).

View Article and Find Full Text PDF

Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules.

View Article and Find Full Text PDF

In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs.

View Article and Find Full Text PDF

Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of germline-specific piRNA clusters ensure transcription and processing of piRNA precursors.

View Article and Find Full Text PDF

Background: Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline.

Results: To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions.

View Article and Find Full Text PDF

Piwi in a complex with Piwi-interacting RNAs (piRNAs) triggers transcriptional silencing of transposable elements (TEs) in Drosophila ovaries, thus ensuring genome stability. To do this, Piwi must scan the nascent transcripts of genes and TEs for complementarity to piRNAs. The mechanism of this scanning is currently unknown.

View Article and Find Full Text PDF
Article Synopsis
  • In Drosophila, transposable elements (TEs) like the I-element are silenced by piRNAs, originating from piRNA clusters and processed by PIWI proteins, but the ability to control these TEs varies among different strains of Drosophila.
  • R strains, which don't have active I-elements but do have remnants, show considerable differences in their reactivity to I-element activity, indicating a strong natural variation in their defense mechanisms against TEs.
  • Comparative analysis of small RNAs indicates that strains with higher reactivity exhibit lower levels of specific piRNAs related to ancestral I-elements, suggesting that efficient piRNA production may be key in the adaptive genome defense against TE invas
View Article and Find Full Text PDF

The germline-specific role of telomeres consists of chromosome end elongation and proper chromosome segregation during early developmental stages. Despite the crucial role of telomeres in germ cells, little is known about telomere biology in the germline. We analyzed telomere homeostasis in the Drosophila female germline and early embryos.

View Article and Find Full Text PDF

Electrostatic charging via contact electrification or tribocharging refers to the process of charge transfer between two solid surfaces when they are brought into contact with each other and separated. Charging of continuous particulate flows on solid surfaces is poorly understood and has often been empirical. This study aims toward understanding the tribocharging of pharmaceutical excipients using a simplified geometry of unidirectional flow in a hopper-chute assembly.

View Article and Find Full Text PDF

The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA-mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive.

View Article and Find Full Text PDF

In the Drosophila germline, retrotransposons are silenced by the PIWI-interacting RNA (piRNA) pathway. Telomeric retroelements HeT-A, TART and TAHRE, which are involved in telomere maintenance in Drosophila, are also the targets of piRNA-mediated silencing. We have demonstrated that expression of reporter genes driven by the HeT-A promoter is under the control of the piRNA silencing pathway independent of the transgene location.

View Article and Find Full Text PDF
Article Synopsis
  • Polytene chromosomes in D. melanogaster exhibit underrepresentation of heterochromatic pericentric regions, specifically in relation to the X-linked Stellate repeats.
  • The study reveals that when a Stellate cluster fragment is transposed into euchromatin, it gets replicated in polytene chromosomes, particularly those near newly formed eu-heterochromatic boundaries.
  • Internal rearrangements of the distal Xh don't impact Stellate replication, but trans effects from heterochromatic regions can influence the replication of these rearranged sequences, suggesting a role for heterochromatic proteins in their underrepresentation.
View Article and Find Full Text PDF

The therapeutic benefits of the antidepressant nefazodone have been hampered by several cases of acute hepatotoxicity/liver failure. Although the mechanism of hepatotoxicity remains unknown, it is possible that reactive metabolites of nefazodone play a causative role. Studies were initiated to determine whether nefazodone undergoes bioactivation in human liver microsomes to electrophilic intermediates.

View Article and Find Full Text PDF