Sci Bull (Beijing)
October 2023
The on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi-[Formula: see text] photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around [Formula: see text], the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration.
View Article and Find Full Text PDFElectrons bound in highly charged heavy ions such as hydrogen-like bismuth Bi experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED.
View Article and Find Full Text PDF