2D van der Waals (vdW) magnets are gaining attention in fundamental physics and advanced spintronics, due to their unique dimension-dependent magnetism and potential for ultra-compact integration. However, achieving intrinsic ferromagnetism with high Curie temperature (T) remains a technical challenge, including preparation and stability issues. Herein, an applicable electrochemical intercalation strategy to decouple interlayer interaction and guide charge doping in antiferromagnet VOCl, thereby inducing robust room-temperature ferromagnetism, is developed.
View Article and Find Full Text PDFAddressing the need for modulated spin configurations is crucial, as they serve as the foundational building blocks for next-generation spintronics, particularly in atomically thin structures and at room temperature. In this work, we realize intrinsic ferromagnetism in monolayer flakes and tunable ferro-/antiferromagnetism in (FeCo)GeTe antiferromagnets. Remarkably, the ferromagnetic ordering (≥1 L) and antiferromagnetic ordering (≥4 L) remain discernible up to room temperature.
View Article and Find Full Text PDF2D van der Waals (vdW) antiferromagnets have received intensive attention due to their terahertz resonance, multilevel magnetic-order states, and ultrafast spin dynamics. However, accurately identifying their magnetic configuration still remains a challenge owing to the lack of net magnetization and insensitivity to external fields. In this work, the Néel-type antiferromagnetic (AFM) order in 2D antiferromagnet VPS with the out-of-plane anisotropy, which is demonstrated by the temperature-dependent spin-phonon coupling and second-harmonic generation (SHG), is experimentally probed.
View Article and Find Full Text PDFMAXPEEM, a dedicated photoemission electron microscopy beamline at MAX IV Laboratory, houses a state-of-the-art aberration-corrected spectroscopic photoemission and low-energy electron microscope (AC-SPELEEM). This powerful instrument offers a wide range of complementary techniques providing structural, chemical and magnetic sensitivities with a single-digit nanometre spatial resolution. The beamline can deliver a high photon flux of ≥10 photons s (0.
View Article and Find Full Text PDFThe synthesis of two-dimensional (2D) transition metals has attracted growing attention for both fundamental and application-oriented investigations, such as 2D magnetism, nanoplasmonics and non-linear optics. However, the large-area synthesis of this class of materials in a single-layer form poses non-trivial difficulties. Here we present the synthesis of a large-area 2D gold layer, stabilized in between silicon carbide and monolayer graphene.
View Article and Find Full Text PDFA critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS complexes.
View Article and Find Full Text PDFGraphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples.
View Article and Find Full Text PDFWe develop a method for patterning a buried two-dimensional electron gas (2DEG) in silicon using low kinetic energy electron stimulated desorption (LEESD) of a monohydride resist mask. A buried 2DEG forms as a result of placing a dense and narrow profile of phosphorus dopants beneath the silicon surface; a so-called δ-layer. Such 2D dopant profiles have previously been studied theoretically, and by angle-resolved photoemission spectroscopy, and have been shown to host a 2DEG with properties desirable for atomic-scale devices and quantum computation applications.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2017
The growth, morphology, structure, and stoichiometry of ultrathin praseodymium oxide layers on Ru(0001) were studied using low-energy electron microscopy and diffraction, photoemission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. At a growth temperature of 760 °C, the oxide is shown to form hexagonally close-packed (A-type) PrO(0001) islands that are up to 3 nm high. Depending on the local substrate step density, the islands either adopt a triangular shape on sufficiently large terraces or acquire a trapezoidal shape with the long base aligned along the substrate steps.
View Article and Find Full Text PDFEchoing the roaring success of their bulk counterparts, nano-objects built from organolead halide perovskites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the photoinduced charge dynamics is essential for optimizing the optoelectronic functionalities. However, mapping the carrier-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales.
View Article and Find Full Text PDFAfter having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles.
View Article and Find Full Text PDFTrilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene.
View Article and Find Full Text PDFCharacteristics of nanoscale materials are often different from the corresponding bulk properties providing new, sometimes unexpected, opportunities for applications. Here we investigate the properties of 8 nm colloidal nanoparticles of MAPbBr3 perovskites and contrast them to the ones of large microcrystallites representing a bulk. X-ray spectroscopies provide an exciton binding energy of 0.
View Article and Find Full Text PDFAn investigation of how electron/photon beam exposures affect the intercalation rate of Na deposited on graphene prepared on Si-face SiC is presented. Focused radiation from a storage ring is used for soft X-ray exposures while the electron beam in a low energy electron microscope is utilized for electron exposures. The microscopy and core level spectroscopy data presented clearly show that the effect of soft X-ray exposure is significantly greater than of electron exposure, , it produces a greater increase in the intercalation rate of Na.
View Article and Find Full Text PDF