Circulating tumor DNA (ctDNA) in blood carries genetic variations associated with tumors. There is evidence indicating that the abundance of single nucleotide variant (SNV) in ctDNA is correlated well with cancer progression and metastasis. Thus, accurate and quantitative detection of SNVs in ctDNA may benefit clinical practice.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2) testing has great value for cancer diagnosis, prognosis and treatment selection. However, the clinical utility of HER2 is frequently tempered by the uncertainty regarding the accuracy of the methods currently available to assess HER2. The development of novel methods for accurate HER2 testing is in great demand.
View Article and Find Full Text PDFMiRNAs are known to be involved in a series of diseases, including breast cancer, and they have the potential to serve as diagnostic/prognostic markers and therapeutic targets. A prerequisite for miRNAs to be applied in clinical practice is the quantitative profiling of their expression. However, the majority of current assays used in miRNA detection are highly enzyme-dependent.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play a significant role in numerous biological processes and are implicated in a range of cancers, including breast cancer. MiRNAs have the potential to be biomarkers in clinical practice because of their distorted and unique expression, especially with regard to their presence in cancer stem cells (CSCs) that have applications in cancer diagnosis and treatment. Thus, the absolute determination of miRNA expression levels is a prerequisite for exploring their applications.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are emerging as novel biomarkers for diagnosis and treatment of various cancers, including breast cancer. Because the value of biomarkers primarily depends on whether they are quantifiable, great effort has been taken to develop assays for sensitive and accurate quantification of miRNAs. However, most of current assays have high nonspecific amplification effect, which limits quantification accuracy.
View Article and Find Full Text PDF