Publications by authors named "Yuqiao Chai"

The unique properties of confined water molecules within polymer networks have garnered extensive research interest in energy storage, catalysis, and sensing. Confined water molecules exhibit higher thermodynamic stability compared to free water, which reduces decomposition and evaporation of water in hydrogel electrolyte system. Herein, a facile strategy is developed to limit active water molecules in a hydrogel network via hydrogen bonding within a topological network.

View Article and Find Full Text PDF

Multi-interpenetrated metal-organic frameworks (MOFs) have exhibited excellent performance in selective adsorption due to the variable post-interspersed flexibility, but the design and control remain challenging. Herein, two anthracene-based ligands, 4,4'-(anthracene-9,10-diyl)dibenzoic acid (HL1) and 9,10-di(pyridin-4-yl)anthracene (L2), are used to construct a new three-dimensional 6-fold interpenetrated MOF [Zn(L1)(L2)] (), which exhibits multiple C-H···π interactions that enhance the structural rigidity, thereby entangling with a CH/CH separation performance. In this material, the incorporation of abundant anthracene rings within the framework not only partitions and restricts the pore window size to a quasi-double pore but also stabilizes it through host-host interactions.

View Article and Find Full Text PDF

Light is an indispensable factor in the healthy growth of living organisms, and alterations in the photoperiod can have consequences for body homeostasis. The eyestalk is a photosensitive organ that secretes various hormones to regulate the Chinese mitten crab (). However, the photoperiod-dependent eyestalk patterns of gene expression that may underlie changes in body homeostasis are unknown.

View Article and Find Full Text PDF

High-capacity electrochemical energy storage systems are more urgently needed than ever before with the rapid development of electric vehicles and the smart grid. The most efficient way to increase capacity is to develop electrode materials with low molecular weights. The low-cost metal halides are theoretically ideal cathode materials due to their advantages of high capacity and redox potential.

View Article and Find Full Text PDF

Pressure sensors for living organisms can monitor both the movement behavior of the organism and pressure changes of the organ, and they have vast perspectives for the health management information platform and disease diagnostics/treatment through the micropressure changes of organs. Although pressure sensors have been widely integrated with e-skin or other wearable systems for health monitoring, they have not been approved for comprehensive surveillance and monitoring of living organisms due to their unsatisfied sensing performance. To solve the problem, here, we introduce a novel structural design strategy to manufacture reduced graphene oxide-polypyrrole aerogel-based microfibers with a typical coaxial heterogeneous structure, which significantly enhances the sensitivity, resolution, and stability of the derived pressure microsensors.

View Article and Find Full Text PDF

Aqueous energy-storage systems have attracted wide attention due to their advantages such as high security, low cost, and environmental friendliness. However, the specific chemical properties of water induce the problems of narrow electrochemical stability window, low stability of water-electrode interface reactions, and dissolution of electrode materials and intermediate products. Therefore, new low-cost aqueous electrolytes with different water chemistry are required.

View Article and Find Full Text PDF

Leakage of paraffin wax (PW) is a major concern in the development of polymer bonded explosive (PBX) systems because it relates to the amount of PW that can be used as a desensitizer or a fuel, which, in turn, affects the mechanical performance and tolerance of PBX in high-temperature environments. Hydroxyl-terminated polybutadiene (HTPB) binders significantly contribute desirable polymer features to PBX. Thus, a three-dimension (3D) high-temperature non-flowing diurea-paraffin wax (DU-PW) composite was synthesized and creatively employed to a HTPB binder.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Yuqiao Chai"

  • - Yuqiao Chai's research spans various materials science applications, focusing particularly on creating and enhancing the performance of metal-organic frameworks (MOFs) and advanced energy storage systems by utilizing low-cost materials and novel structural designs.
  • - His recent work includes investigating the effects of photoperiodic changes on the gene expression in the eyestalk of the Chinese mitten crab, shedding light on the influence of light on hormonal regulation and body homeostasis in living organisms.
  • - Additionally, Chai has pioneered advancements in pressure monitoring technologies by developing reduced graphene oxide-polypyrrole aerogel-based microfiber sensors, which significantly improve sensitivity and functionality for health management applications.