Publications by authors named "Yuqian Qiu"

The utilization of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries has been extensively explored due to their excellent flexibility, processability adaptability to match roll-to-roll manufacturing processes, and good interfacial contact with a high-capacity Na anode; however, SPEs are still impeded by their inadequate mechanical strength, excessive thickness, and poor stability with Na anodes. Herein, a robust, thin, and cost-effective polyethylene (PE) film is employed as a skeleton for infiltrating poly(ethylene oxide)-sodium bis(trifluoromethanesulfonyl)imide (PEO/NaTFSI) to fabricate PE-PEO/NaTFSI SPE. The resulting SPE features a remarkable thickness of 25 μm, lightweight property (2.

View Article and Find Full Text PDF

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes are considered promising materials for realizing high-safety and high-energy-density lithium metal batteries. However, the high crystallinity of PEO at room temperature triggers low ionic conductivity and Li transference number, critically hindering practical applications in solid-state lithium metal batteries. Herein, we prepared nanosized TiO with enriched oxygen vacancies down to 13 nm as fillers by laser irradiation, which can be coated by in situ generated polyacetonitrile, ensuring good dispersibility in PEO.

View Article and Find Full Text PDF

Composite solid electrolytes (CSEs) with poly(ethylene oxide) (PEO) have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li solvating capability, flexible processability and low cost. However, unsatisfactory room-temperature ionic conductivity, weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress. Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture, spatial distribution and content, which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.

View Article and Find Full Text PDF

Owing to their intrinsic and pronounced charge carrier transport when facing the formidable challenge of inhibiting severe surface charge recombination, one-dimensional (1D) CdS nanostructures are promising for advancing high-yield hydrogen production. We herein demonstrate an efficient strategy of boosting interfacial carrier separation by heterostructuring 1D CdS with defective WS. This process yields solid covalent interfaces for high flux carrier transfer that differ distinctively from those reported structures with physical contacts.

View Article and Find Full Text PDF

Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying.

View Article and Find Full Text PDF

Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage, while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix. Herein, face-to-face covalent bridging in-between the 2D-nanosheets/graphene heterostructure is constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene, where the amorphous nanoparticles were designed via the competitive oxidation of Sn-O and Sn-S bonds, and metastable feature was employed to facilitate the formation of the C-S-Sn covalent bonding in-between the heterostructure. The face-to-face bridging of ultrathin SnS nanosheets on graphene enables the heterostructure huge covalent coupling area and high loading and thus renders unimpeded electron/ion transfer pathways and indestructible electrode structure, and impressive reversible capacity and rate capability for sodium-ion batteries, which rank among the top in records of the SnS-based anodes.

View Article and Find Full Text PDF

The dehydrative mono-/dialkylation reactions of alcohols and β-ketoacids were realized under arylboronic acid catalysis, furnishing a series of β-aryl ketones and β-ketoesters in yields of 15-99%, with CO and HO being the byproducts. In this context, the decarboxylative alkylation reaction occurred to give β-aryl ketones at 50 °C, while the decarboxylation was suppressed to generate dialkylated ester products at 0 °C. A possible catalytic cycle was proposed based on control experiments.

View Article and Find Full Text PDF

The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen-enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long-term capacity fading. Here we propose a strategy based on pyrolysis-etching of a pyridine-coordinated polymer for deliberate manipulation of edge-nitrogen doping and specific spatial distribution in amorphous high-surface-area carbons; the obtained material shows an edge-nitrogen content of up to 9.

View Article and Find Full Text PDF

Sluggish reaction kinetics induced by the poor solid-state ion diffusion and low electrical conductivity of electrode materials are currently in conflict with increasing fast-charge needs for sodium-ion batteries (SIBs) based on conversion mechanism. Herein, mesoporous, conductive, thin-wall three-dimensional (3D) skeletons of molybdenum nitride (meso-MoN) were established and employed as anodes to facilitate the rate performance of SIBs. Mesoporous channels (∼9.

View Article and Find Full Text PDF

Development of highly porous carbons with abundant surface functionalities and well-defined nanostructure is of significance for many important electrochemical energy storage systems. However, porous carbons suffer from a compromise between porosity, doped functionality, and nanostructure that have thus far restricted their performances. Here, we report the design of highly porous, nitrogen-enriched hollow carbon nanospheres (PN-HCNs) by an interfacial copolymerization strategy followed by NH-assisted carbonization, and further demonstrate their significance and effectiveness in enhancing the electrochemical performances.

View Article and Find Full Text PDF

Understanding correlation between the nanostructure of porous carbons and their ion transport behavior is critical for achieving high-performance supercapacitors. Herein, the relationship between size and shell thickness of carbon nanospheres (CNSs) and capacitive electrochemical performance is clarified. Structural uniform CNSs with controlled diameters, prepared via template-free interfacial copolymerization, are emerging as an ideal platform for investigating the ion transport behavior.

View Article and Find Full Text PDF