Publications by authors named "Yuping Zhou"

How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted.

View Article and Find Full Text PDF
Article Synopsis
  • Transcranial direct current stimulation (tDCS) is a non-invasive method that might boost athletic performance, specifically in vertical jumping and lower limb strength, but its interaction with high-load resistance training was unclear.
  • This study aimed to examine how tDCS paired with high-load resistance training affects lower limb performance and changes in brain activity, with experiments conducted on 29 participants utilizing various training conditions.
  • Results indicated that the combination of tDCS and high-load resistance training led to a significant increase in jump height and notable changes in brain wave activity in specific areas of the left hemisphere.
View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on identifying plasma IgG N-glycan biomarkers, specifically fucosylation, to enhance risk assessment and survival prediction in patients with pulmonary arterial hypertension (PAH).
  • Researchers analyzed data from 622 PAH patients across two different cohorts and utilized mass spectrometry to profile IgG N-glycans, confirming the effectiveness of these biomarkers through various statistical models.
  • The findings indicate that IgG fucosylation is a strong and independent predictor of survival in PAH, and incorporating it into existing risk assessment models improves their predictive accuracy, especially for intermediate-risk patients.
View Article and Find Full Text PDF

Endometriosis is a debilitating, chronic inflammatory disease affecting approximately 10% of reproductive-age women worldwide with no cure. While macrophages have been intrinsically linked to the pathophysiology of endometriosis, targeting them therapeutically has been extremely challenging due to their high heterogeneity and because these disease-associated macrophages (DAMs) can be either pathogenic or protective. Here, we report identification of pathogenic macrophages characterized by TET3 overexpression in human endometriosis lesions.

View Article and Find Full Text PDF

Despite the plethora of methods reported for fabricating ultraviolet (UV) shielding films using various UV absorbers to date, it remains a major challenge for the development of novel UV shielding films that simultaneously exhibit excellent transparency. In this work, a novel composite film (GA-x-CMC/PVA/PEI) is fabricated by integrating anionic carboxymethylcellulose (CMC), cationic polyethyleneimine (PEI), and polyvinyl alcohol (PVA) via electrostatic and hydrogen bond interactions and further cross-linking with glutaraldehyde (GA). Herein, PVA expands hydrogen bonding networks, reduces film haze, and enhances its mechanical strength.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC.

Aim: To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC.

View Article and Find Full Text PDF

HCC, also known as hepatocellular carcinoma, is a frequently occurring form of cancer with an unfavorable prognosis. This research constructed a prognostic signature related to ubiquitination and investigated its correlation with the response to immunotherapy in HCC. The Molecular Signatures Database provided a compilation of genes associated with ubiquitination.

View Article and Find Full Text PDF

Background: Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF).

View Article and Find Full Text PDF

Background: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy. Short-chain fatty acids (SCFAs), prominent metabolites of the gut microbiota, have significant connections with various pregnancy complications, and some SCFAs hold potential for treating such complications. However, the metabolic profile of SCFAs in patients with ICP remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Lomefloxacin hydrochloride ear drops are sensitive to light, which can cause harmful impurities that may affect patient health due to phototoxicity.
  • The study utilized advanced techniques, including liquid chromatography and mass spectrometry, to identify and analyze these light-induced impurities.
  • Researchers identified 17 different impurities, 12 of which were previously unknown, leading to better quality control measures for the safety of lomefloxacin hydrochloride ear drops.
View Article and Find Full Text PDF

Microplastics (MPs) are environmental contaminants that are present in all environments and can enter the human body, accumulate in various organs, and cause harm through the ingestion of food, inhalation, and dermal contact. The connection between bowel and liver disease and the interplay between gut, liver, and flora has been conceptualized as the "gut-liver axis". Microplastics can alter the structure of microbial communities in the gut and the liver can also be a target for microplastic invasion.

View Article and Find Full Text PDF

Pre-eclampsia (PE) is the most common complication of pregnancy and seriously threatens the health and safety of the mother and child. Studies have shown that an imbalance in gut microbiota can affect the progression of PE. Trimethylamine N-oxide (TMAO) is an intestinal microbiota-derived metabolite that is thought to be involved in the occurrence of PE; however, its causal relationship and mechanism remain unclear.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a prevalent clinical malignancy of the gastrointestinal system, and its clinical drug resistance is the leading cause of poor prognosis. Mechanistically, CRC cells possess a specific oxidative stress defense mechanism composed of a significant number of endogenous antioxidants, such as glutathione, to combat the damage produced by drug-induced excessive reactive oxygen species (ROS). We report on a new anti-CRC nanoplatform, a multifunctional chemo-photothermal nanoplatform based on Camptothecin (CPT) and IR820, an indocyanine dye.

View Article and Find Full Text PDF

A composite film (CMC/PEI) consisting of anionic carboxymethylcellulose (CMC) and cationic polyethyleneimine (PEI) can be easily produced through the solution casting method using self-assembly based on electrostatic interaction and hydrogen bonding. Subsequently, the resulting CMC/PEI polyelectrolyte composite film with a network structure was crosslinked with divalent Cu ions through ionic and coordination bonds, resulting in a strengthened Cu(II)@CMC/PEI film. The composite film was characterized based on its structural, surface, thermal, UV protection, antibacterial, and degradation aspects.

View Article and Find Full Text PDF

To determine the risk factors and nursing countermeasures for post-operative hematoma in hemodialysis patients with autogenous arteriovenous fistula by logistic regression analysis. A retrospective analysis of 240 chronic hemodialysis patients admitted to our hospital from January 2019 to October 2022 was performed. Physical and vascular examinations of the patients were performed by surgeons.

View Article and Find Full Text PDF

Background: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is multifactorial and growing evidence has indicated that hematological disorders are involved. Clonal hematopoiesis of indeterminate potential (CHIP) has recently been associated with an increased risk of both hematological malignancies and cardiovascular diseases. However, the prevalence and clinical relevance of CHIP in patients with CTEPH remains unclear.

View Article and Find Full Text PDF

Chronic liver disease (CLD) imposes a heavy burden on millions of people worldwide. Despite substantial research on the pathogenesis of CLD disorders, no optimal treatment is currently available for some diseases, such as liver cancer. Exosomes, which are extracellular vesicles, are composed of various cellular components.

View Article and Find Full Text PDF

Drug resistance is one of the leading causes of treatment failure in current cancer chemotherapy. In addition to the classical drug efflux transporter-mediated chemoresistance, cancer cells with stemness features play a crucial role in escaping the maximum impact of chemotherapy. To sensitize cancer chemotherapy, in a novel approach, the hedgehog pathway inhibitor ellagic acid (EA) is coordinated with Cu to develop nanoscale metal-organic frameworks (EA-Cu), which are then loaded with doxorubicin (DOX) and modified with targeted chondroitin sulfate (CS) to form the CS/E-C@DOX nanoplatform (CS/NPs).

View Article and Find Full Text PDF

Estuaries are hotspots where terrestrially originated dissolved organic matter (DOM) is modified in molecular composition before entering marine environments. However, very few research has considered nitrogen (N) modifications of DOM molecules in estuaries, limiting our understanding of dissolved organic nitrogen (DON) cycling and the associated carbon cycling in estuaries. This study integrated optical, stable isotopes (δN and δC) and molecular composition (FT-ICR MS) to characterize the transformation of DOM in the Yangtze River Estuary.

View Article and Find Full Text PDF

We fabricated an efficient Pd@HKUST-1@Cu(II)/CMC composite bead catalyst through an innovative strategy based on the unique properties of metal-organic frameworks (MOFs) and carboxymethylcellulose (CMC). In this strategy, HKUST-1 MOFs were grown in-situ on the surface of micrometer-sized Cu-based CMC beads (Cu(II)/CMC), then Pd(II) ions were incorporated into the pores of the MOF and further be partially reduced to Pd(0) NPs, which is an active species for oxidative addition with aryl halides in Sonogashira reactions. The micron-sized Cu(II)/CMC beads were formed through inter/intramolecularly crosslinking facilitated by Cu(II) ions, which was achieved by the metathesis of Cu(II) with numerous carboxylic groups of CMC.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) has developed into the most common chronic liver disease and can lead to liver cancer. Our laboratory previously developed a novel prescription for NAFLD, "Eight Zhes Decoction" (EZD), which has shown good curative effects in clinical practice. However, the pharmacodynamic material basis and mechanism have not yet been revealed.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is an essential component of the global carbon cycle, and estuaries link the rivers and the oceans, thus playing important roles in land-ocean DOM transformation and transport. However, the effects of hypoxia on DOM transport and fate in estuaries and coastal oceans remains poorly understood. To address this gap, we characterized the molecular composition of DOM in bottom water (BW) and sediment porewater (PW) at hypoxic and non-hypoxic sites in the Yangtze River Estuary (YRE) using ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the second most deadly cancer worldwide, with chemo-resistance remaining a major obstacle in CRC treatment. Notably, the imbalance of redox homeostasis-mediated ferroptosis and the modulation of hypoxic tumor microenvironment are regarded as new entry points for overcoming the chemo-resistance of CRC.

Methods: Inspired by this, we rationally designed a light-activatable oxygen self-supplying chemo-photothermal nanoplatform by co-assembling cisplatin (CDDP) and linoleic acid (LA)-tailored IR820 via enhanced ferroptosis against colorectal cancer chemo-resistance.

View Article and Find Full Text PDF