Environmental pollution and resource scarcity characterize the Yellow River Basin. Studying the factors of high-quality development efficiency (HQDE) and its spatial correlation in the Yellow River Basin is conducive to promoting the maximization of resource allocation in the Yellow River Basin. In this study, Super-EBM and Malmquist index were used to measure HQDE in the Yellow River Basin and explore its influencing factors.
View Article and Find Full Text PDFTo suppress the hydrogen evolution reaction (HER) and dendrite formation on the Zn anode in aqueous Zn-ion batteries, a submicrometer InO coating on the Zn anode (referred to as Zn@InO) was constructed via magnetron sputtering. Density functional theory (DFT) and experimental data show that the InO coating suppresses the HER because of its weaker interactions with H* compared with Zn, inhibiting the Volmer step. At the same time, the InO coating exhibits a moderate affinity for Zn*, higher than that on Zn but lower than that at the InO-Zn interface, thus facilitating the desolvation of the hydrated Zn ions while promoting its deposition on the Zn substrate beneath the InO coating.
View Article and Find Full Text PDFBackground: 'Not-from-concentrate' (NFC) orange juice faces stability challenges. Its rheological properties are also important for optimizing processes such as pumping. These issues affect companies in terms of their cost implications, and they affect product quality and consumer acceptance directly.
View Article and Find Full Text PDFThe practical development of Li-O batteries is often hindered by poor cycling stability, which arises from volatile liquid electrolytes, an unstable anode/electrolyte interface, and sluggish reaction kinetics related to LiO. In this study, we design a long-life quasi-solid-state Li-O battery by integrating a gel polymer electrolyte (GPE) with a tetramethylpiperidinyloxy (TEMPO) redox mediator anchored in a poly(2,2,6,6-tetramethylpiperidinyloxy-4-methacrylate) (PTMA) cathode. During cycling, the GPE stabilizes the lithium/electrolyte interface and retains the electrolyte, while the TEMPO moieties anchored in the PTMA cathode effectively enhance the catalytic selectivity for LiO formation and decomposition.
View Article and Find Full Text PDFExtensive research on supercapacitor-battery hybrid devices has bridged the gap between conventional batteries and supercapacitors. However, several challenges persist, including limited capacitance in the negative potential range, restricted rate capability, and a narrow potential window (<1.23 V) in aqueous electrolytes.
View Article and Find Full Text PDFThe "shuttle effect" and the unchecked growth of lithium dendrites during operation in lithium-sulfur (Li-S) batteries seriously impact their practical applications. Besides, the performances of Li-S batteries at high current densities and sulfur loadings hold the key to bridge the gap between laboratory research and practical applications. To address the above issues and facilitate the practical utilization of Li-S batteries, the commercial separator is modified with solid electrolyte (nanorod LiAlO, LAO) and conductive carbon (Super P) to obtain a double coated separator (SPLAOMS).
View Article and Find Full Text PDFAims: We recently demonstrated the combined prognostic value of two simple non-invasive parameters obtained from treadmill exercise testing in patients with heart failure (HF) with reduced ejection fraction, the haemodynamic gain index (HGI) and peak rate-pressure product (RPP). However, their prognostic value is yet to be validated in patients with undifferentiated HF syndrome.
Methods: We identified consecutive HF patients undergoing treadmill exercise testing for symptom evaluation between 1/1991-2/2015.
The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.
View Article and Find Full Text PDFEnviron Sci Technol
February 2025
Increasing evidence suggests that organohalogen contaminants (OHCs) could disrupt lipid metabolism in organisms, prompting consideration of fatty acids (FAs) as biological tools for assessing chemical stress in biological systems. This study examined 87 OHCs and 32 FAs in two sentinel cetacean species─Indo-Pacific humpback dolphins ( = 128) and Indo-Pacific finless porpoises ( = 26)─from the northern South China Sea (NSCS), a global hotspot for OHCs. Our results revealed higher OHC levels in these cetaceans than global averages.
View Article and Find Full Text PDFMetal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.
View Article and Find Full Text PDFConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFThe design of anode-free zinc (Zn) batteries with high reversibility at high areal capacity has received significant attention recently, which is quietly challenging yet. Here, a Zn alloyed interface through electroplating is introduced, providing homogeneous Zn prenucleation sites to stabilize subsequent Zn nucleation and plating. By employing Zn-Cu alloy as a module, the complementary simulations and characterizations confirm that the prenucleation alloyed interfaces achieve a homogeneous electric field distribution and greatly enhance the stability of the Zn anode.
View Article and Find Full Text PDFAqueous rechargeable potassium-ion batteries have considerable advantages and potentials in the application of large-scale energy storage systems, owing to its high safety, abundant potassium resources, and environmental friendliness. However, the practical applications are fraught with numerous challenges. Identification of suitable cathode materials and potassium storage mechanisms are of great significance.
View Article and Find Full Text PDFPlacebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFAs global demand for clean and sustainable energy continues to rise, fuel cell technology has seen rapid advancement. However, the presence of trace impurities like carbon monoxide (CO) and hydrogen sulfide (H₂S) in hydrogen fuel can significantly deactivate the anode by blocking its active sites, leading to reduced performance. Developing electrocatalysts that are resistant to CO and H₂S poisoning has therefore become a critical priority.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
Fruit quality and yield in orchards will decrease after long-term planting. To analyze the changes of soil quality under different planting years and identify the key factors of the declining of orchard soil quality could provide scientific foundation for optimizing fertilization management of orchard soil. In this study, we analyzed the changes of soil physical, chemical, and biological properties of loquat orchard under different planting years (<10 years, 10-15 years, 15-20 years, ≥20 years) in Ninghai County, Zhejiang Province, and evaluated soil health by using soil quality index, multifunctionality index, and sensitivity and resistance indicators.
View Article and Find Full Text PDFAchieving efficient and stable hydrogen evolution reactions in alkaline conditions is crucial for hydrogen production. In this study, a RuIr/CoNC-P catalyst featuring RuIr alloys alongside P-doping and CoNx sites is developed. RuIr alloying optimizes the electronic structure between Ru and Ir, promoting electron transfer from Ru to Ir.
View Article and Find Full Text PDFUnderstanding early life history events within a population is imperative for developing effective conservation and management practices, particularly for vulnerable species in degraded environments with high environmental variability. Here, we first investigated the lifetime record of trace element (TE) accumulation in the teeth of Indo-Pacific humpback dolphins from the Pearl River Estuary, China, using in-situ laser ablation-inductively coupled plasma-mass spectrometry microanalysis, and further explored the suitability of teeth TEs as bioindicators of critical life stages. A total of 26 TEs were detected in the teeth of eight dolphins, with concentrations ranging from 0.
View Article and Find Full Text PDFThe Duke activity status index (DASI), a self-administered 12-item questionnaire has been used to estimate functional capacity and recently demonstrated prognostic information. We aimed to develop an abbreviated version for clinical applications. Leveraging the Cleveland Clinic GeneBank Study, we developed an abbreviated DASI questionnaire (aDASI) with the machine learning XGBoost algorithm, with the goal of maintaining the accuracy and reliability of the original DASI.
View Article and Find Full Text PDFCurrent solid- and liquid-state electrode materials with extreme physical states show inherent limitation in achieving the ultra-stable batteries. Herein, we present a colloidal electrode design with an intermediate physical state to integrate the advantages of both solid- and liquid-state materials. The colloidal electrode was designed based on the inherent water competition effect of (SO) from the aqueous electrolyte and inherently water-soluble polyethylene glycol (PEG)/ZnI from the cathode.
View Article and Find Full Text PDFSolid-state batteries (SSBs) present a potential pathway for advancing next-generation lithium batteries, characterized by exceptional energy density and enhanced safety performance. Solid-state electrolytes have been extensively researched, yet an affordable option with outstanding electrochemical performance is still lacking. In this work, LiNaTiO (LNTO)-based composite solid electrolytes (CSEs) were developed to enhance the interface stability and electronic insulation.
View Article and Find Full Text PDFDesigning effective electrode material is crucial for developing ultra-long lifetime batteries, thereby reducing daily battery costs. Current electrode materials are typically solid or liquid state, with an intermediate colloidal state offering the advantages of fixed redox-active species, akin to solid-state materials, and the absence of rigid atomic structure, akin to liquid-state materials, while avoiding the particle pulverization and uncontrolled migration. Herein, an aqueous Zn||Pluronic F127 (PF127)/ZnI colloid battery is developed utilizing the inherent water molecular control effect of ZnSO.
View Article and Find Full Text PDFCarbonaceous materials have been considered the most promising anode in sodium-ion batteries (SIBs) due to their low cost, good electrical conductivity, and structural stability. The main challenge of carbonaceous anodes prior to their commercialization is low initial coulomb efficiencies, derived from a lack of an efficient technique to reveal a fundamental comprehension of sodium storage mechanisms. Here, the direct observation of quasi-Na metallic clusters in carbonaceous anodes during cycling through in situ XRD is reported.
View Article and Find Full Text PDF