Photosynthesis is the energetic basis for most life on Earth, and in plants it operates inside double membrane-bound organelles called chloroplasts. The photosynthetic apparatus comprises numerous proteins encoded by the nuclear and organellar genomes. Maintenance of this apparatus requires the action of internal chloroplast proteases, but a role for the nucleocytosolic ubiquitin-proteasome system (UPS) was not expected, owing to the barrier presented by the double-membrane envelope.
View Article and Find Full Text PDFAim: Oxalic acid (OA) is one of the pathogenic factors of Botrytis cinerea. Trichoderma afroharzianum exerts both antagonistic and oxalate-degrading effects on B. cinerea.
View Article and Find Full Text PDFLipid components in the developing kernel of Paeonia ostii were determined, and the fatty acid (FA) distributions in triacylglycerol and phospholipids were characterized. The lipids in the kernel were mainly phospholipids (43%), neutral glycerides (24%), fatty acyls (26%), and sphingolipids (4.5%).
View Article and Find Full Text PDFBackground: Paeonia ostii is a potentially important oilseed crop because its seed yield is high, and the seeds are rich in α-linolenic acid (ALA). However, the molecular mechanisms underlying ALA biosynthesis during seed kernel, seed testa, and fruit pericarp development in this plant are unclear. We used transcriptome data to address this knowledge gap.
View Article and Find Full Text PDFJ Microbiol Methods
November 2017
Botrytis cinerea is an important plant pathogen causing grey mold disease in a wide range of plant species. The aim of this study was to identify reliable reference genes that can be used for the analysis of relative gene expression in B. cinerea with quantitative real-time reverse transcription PCR (qRT-PCR).
View Article and Find Full Text PDFAn appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e.
View Article and Find Full Text PDF