Background And Purpose: The field of hydrogen medicine has garnered extensive attention since Professor Ohsawa established that low concentrations of hydrogen (2%-4%) exert antioxidant effects. The present study aimed to evaluate the therapeutic effect of molecular hydrogen in a CUMS rat model.
Methods: A total of 40 SD rats were randomly divided into a control group, a model group, a hydrogen group, and a positive drug group.
In recent decades, with the intensification of human activities, atmospheric nitrogen (N) deposition has been increasing. N deposition affects carbon (C) cycling in terrestrial ecosystems, especially in fragile karst ecosystems. Karst ecosystems are considered to be an important C pool.
View Article and Find Full Text PDFThe capability of traditional ligand in countering rapid passivation on nanoscale zero-valent iron (nZVI) surface is inadequate, and the precise electron transfer mechanism remains elusive. In this study, we reported that myo-inositol hexakisphosphate (IHP), a redox-inactive organophosphorus in soil, could highly enhance Cr(VI) reduction and immobilization in comparison with typical ligands (TPP, EDTA, oxalate and phosphate). And the effects of IHP concentration, Cr(VI) concentration and initial pH were systematically investigated.
View Article and Find Full Text PDFWhite adipose tissue browning can promote lipid burning to increase energy expenditure and improve adiposity. Here, we show that Slc35d3 expression is significantly lower in adipose tissues of obese mice. While adipocyte-specific Slc35d3 knockin is protected against diet-induced obesity, adipocyte-specific Slc35d3 knockout inhibits white adipose tissue browning and causes decreased energy expenditure and impaired insulin sensitivity in mice.
View Article and Find Full Text PDFInsulin resistance is associated with many pathological conditions, and an in-depth understanding of the mechanisms involved is necessary to improve insulin sensitivity. Here, we show that ZFYVE28 expression is decreased in insulin-sensitive obese individuals but increased in insulin-resistant individuals. Insulin signaling inhibits ZFYVE28 expression by inhibiting NOTCH1 via the RAS/ERK pathway, whereas ZFYVE28 expression is elevated due to impaired insulin signaling in insulin resistance.
View Article and Find Full Text PDFArteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells.
View Article and Find Full Text PDFHair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells.
View Article and Find Full Text PDFHypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2023
Objective: This study aims to investigate the composition and function of the gut microbiome in long-term depression using an 8-week chronic unpredictable mild stress (CUMS) rat model.
Materials And Methods: Animals were sacrificed after either 4 weeks or 8 weeks under CUMS to mimic long-term depression in humans. The gut microbiome was analyzed to identify potential depression-related gut microbes, and the fecal metabolome was analyzed to detect their functional metabolites.
Al(III)-substituted ferrihydrite existing in natural soils is more common than pure ferrihydrite; however, the effects of Al(III) incorporation on the interaction between ferrihydrite, Mn(II) catalytic oxidation, and coexisting transition metal (e.g., Cr(III)) oxidation remain elusive.
View Article and Find Full Text PDFNaturally occurring oxides could react with zinc oxide (ZnO) nanoparticles (NPs) and then change its transformation and toxicity to ecological receptors. The reaction may be affected by a variety of environmental factors, yet the relevant processes and mechanisms are limitedly investigated. Natural prevalent ligands, as an important factor, can sorb on natural oxide minerals and change its surface property, finally affecting ZnO NP transformation.
View Article and Find Full Text PDFBackground: Compared with patients who require fewer antihypertensive agents, those with apparent treatment-resistant hypertension (aTRH) are at increased risk for cardiovascular and all-cause mortality, independent of blood pressure control. However, the etiopathogenesis of aTRH is still poorly elucidated.
Methods: We performed a genome-wide association study (GWAS) in first cohort including 586 aTRHs and 871 healthy controls.
Oxidation of Mn(II) or As(III) by molecular oxygen is slow at pH < 9, while they can be catalytically oxidized in the presence of oxide minerals and then removed from contaminated water. However, the reaction mechanisms on simultaneous oxidation of Mn(II) and As(III) on oxide mineral surface and their accompanied removal efficiency remain unclear. This study compared Mn(II) oxidation on four common metal oxides (γ-AlO, CuO, α-FeO and ZnO) and investigated the simultaneous oxidation and removal of Mn(II) and As(III) through batch experiments and spectroscopic analyses.
View Article and Find Full Text PDFThe sperm-associated antigen 5 (SPAG5) is an important protein in mitosis and cell cycle checkpoint regulation, with more attention as a novel oncogene in various cancers. High level of SPAG5 expression has been detected in our clinical gastric cancer (GC) samples and The Cancer Genome Atlas GC data. However, the bio-function and potential mechanism of SPAG5 in GC remain unclear.
View Article and Find Full Text PDFMutations in the hyperpolarization-activated nucleotide-gated channel 4 (HCN4) are known to be associated with arrhythmias in which QT prolongation (delayed ventricular repolarization) is rare. Here, we identified a HCN4 mutation, HCN4-R666Q, in two sporadic arrhythmia patients with sinus bradycardia, QT prolongation, and short bursts of ventricular tachycardia. To determine the functional effect of the mutation, we conducted clinical, genetic, and functional analyses using whole-cell voltage-clamp, qPCR, Western blot, confocal microscopy, and co-immunoprecipitation.
View Article and Find Full Text PDFGastric cancer (GC) is a malignancy for which effective therapeutic drugs are limited. Podofilox exhibits antitumor effects in various types of cancer; however, whether it may inhibit GC growth remains unknown. The aim of the present study was to investigate the role of podofilox in GC.
View Article and Find Full Text PDFCo-sorption of metal ions and anions/ligands at the mineral-water interface plays a critical role in regulating the mobility, transport, fate, and bioavailability of these components in natural environments. This review focuses on co-sorption of metal ions and naturally occurring anions/ligands on environmentally relevant minerals. The underlying mechanisms for their interfacial reactions are summarized and the environmental impacts are discussed.
View Article and Find Full Text PDFSci Total Environ
October 2021
Mn(II) adsorption-oxidation on iron (Fe) oxides (e.g., ferrihydrite) occurs in various soils and sediments, significantly affecting the toxicities and bioavailabilities of Mn and other associated elements.
View Article and Find Full Text PDFGATA binding protein 1 (GATA‑1) is one of the most important hematopoietic transcription factors in the production of blood cells, such as platelets, eosinophils, mast cells and erythrocytes. GATA‑1 regulates the participation of microRNA (miRNAs/miRs) in erythroid differentiation under normoxia. However, GATA‑1 expression and the regulation of miR‑210‑3p in the context of erythroid differentiation under hypoxia remain unknown.
View Article and Find Full Text PDFMusk ketone exerts antiproliferative effects on several types of cancer, such as lung and breast cancer. However, the effects and underlying mechanisms of action of musk ketone in gastric cancer (GC) are poorly understood. The present study aimed to investigate the effects of musk ketone in GC cells.
View Article and Find Full Text PDFManganese(IV) oxides, and more especially birnessite, rank among the most efficient metal oxides for As(III) oxidation and subsequent sorption, and thus for arsenic immobilization. Efficiency is limited however by the precipitation of low valence Mn (hydr)oxides at the birnessite surface that leads to its passivation. The present work investigates experimentally the influence of chelating agents on this oxidative process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2020
The widespread use of zinc oxide nanoparticles (ZnO NPs), the second most produced nanomaterial, inevitably leads to their release into the environment. In this study, dissolution and transformation of ZnO NPs in the presence of δ-MnO, an abundant and ubiquitous manganese (Mn) oxide mineral, was investigated via a suite of techniques covering bulk to molecular scales. Dissolution kinetics indicated that the presence of δ-MnO significantly affected ZnO NP dissolution rate/trend and equilibrium Zn concentration, which were found to be mainly dependent on the concentration and mass ratio of ZnO NPs and δ-MnO.
View Article and Find Full Text PDF