Herein, a photoelectrochemical (PEC) assay was designed for a highly sensitive DNA determination relying upon the SnO/BiOBr p-n heterojunction as a photoactive material and SiO as a signal quencher. Compared with most traditional heterojunctions, the SnO/BiOBr p-n heterostructure not only lessened the recombination of the photogenerated electron-hole pairs but also promoted the light-harvesting in the ultraviolet-visible (UV-vis) region, leading to further enhanced photoelectric conversion efficiency and photocurrent, which demonstrated 12.1-fold and 6.
View Article and Find Full Text PDFTraditional approaches for nucleic acids detection require prior amplification of target genes, while nanomaterials-aided DNA biosensors are very magnificent but still suffer from the nanomaterial acquirement and limited sensitivity (above picomolar level). Herein, fullerenol C(OH), a representative fullerene derivative, was employed as a photoelectrochemical (PEC) nanoprobe to achieve discrimination and ultrasensitive detection of amplification-free single-stranded DNA (ssDNA) down to sub-femtomolar level. The bonded hydroxyl groups with intense density endowed fullerenol to directly recognize and capture ssDNA-AuNPs via the hydrogen bonding interactions (H-bonds), leading to a sharply decreased photocurrent with quenching efficiency up to 85%, which could be attributed to the photo-generated electrons on the conduction band of fullerenol (-4.
View Article and Find Full Text PDFCystathionine β-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of HS biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics.
View Article and Find Full Text PDFIn photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells.
View Article and Find Full Text PDFParkinson's disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1-2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments.
View Article and Find Full Text PDFPolarization-sensitive optical coherence tomography (PS-OCT) is an augmented form of OCT, providing 3D images of both tissue structure and polarization properties. We developed a new method of polarization-sensitive optical frequency domain imaging (PS-OFDI), which is based on a wavelength-swept source. In this method the sample was illuminated with unpolarized light, which was composed of two orthogonal polarization states (i.
View Article and Find Full Text PDFThe chemical properties of zinc make it an ideal metal to study the role of coordination strain in enzymatic rate enhancement. The zinc ion and the protein residues that are bound directly to the zinc ion represent a functional charge/dipole complex, and polarization of this complex, which translates to coordination distortion, may tune electrophilicity, and hence, reactivity. Conserved protein residues outside of the charge/dipole complex, such as second-shell residues, may play a role in supporting the electronic strain produced as a consequence of functional polarization.
View Article and Find Full Text PDFShigella flexneri, a gram-negative enteric pathogen, is unusual in that it contains two nonredundant paralogous genes that encode the myristoyl transferase MsbB (LpxM) that catalyzes the final step in the synthesis of the lipid A moiety of lipopolysaccharide. MsbB1 is encoded on the chromosome, and MsbB2 is encoded on the large virulence plasmid present in all pathogenic shigellae. We demonstrate that myristoyl transferase activity due to MsbB2 is detected in limited magnesium medium, but not in replete magnesium medium, whereas that due to MsbB1 is detected under both conditions.
View Article and Find Full Text PDF