The complete sequence of loess strata in Luochuan has become a typical section in loess strata, and is the main focus of research for many scholars studying loess. We were based on the theory of aeolian loess and established a set of quantitative index parameters for loess microstructure through our previous research, such as equivalent diameter, sphericity, morphology ratio, orientation angle Phi, orientation angle Theta, pore Eq-Radius, throat Eq-Radius and throat channelLength. Through the quantitative characterization of various index parameters of the Luochuan loess, we found that the probability density of each index parameter meets a specific distribution well, and in terms of spatial dimension, it shows that as the depth of the strata increases, the average particle size and the mode of pore Eq-Radius, throat Eq-Radius and throat channelLength generally increase, while the mode of particle morphology ratio generally decreases.
View Article and Find Full Text PDFWhat we believe to be a novel low-cost broadband continuous-wave water vapor differential absorption lidar (CW-DIAL) technique has been proposed and implemented by combing the Scheimpflug principle and the differential absorption method. The broadband CW-DIAL technique utilizes an 830-nm high-power multimode laser diode with 3-W output power as a tunable light source and a CMOS image sensor tilted at 45° as the detector. A retrieval algorithm dedicated for the broadband CW-DIAL technique has been developed to obtain range-resolved water vapor concentration from the DIAL signal.
View Article and Find Full Text PDFIn this work, we demonstrated the practical use of Au@CuO core-shell and Au@CuSe yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@CuO core-shell nanocrystal template. Au@CuO and Au@CuSe displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the CuO and CuSe shells.
View Article and Find Full Text PDF