Publications by authors named "Yupei Wei"

Ray parenchyma cells are involved in the initiation of heartwood formation. The position within a ray influences the timing of ray parenchyma cell differentiation and function; however, there is little information concerning the positional influence on the cellular changes of ray parenchyma cells from sapwood and heartwood. In this study, radial variations in morphology, size, and ultrastructure of ray parenchyma cells were studied by combined transmission electron microscopy and optical microscopy.

View Article and Find Full Text PDF

To address the challenges posed by computational resource consumption and data volume in the development of large-aperture metalenses, a design method for concentric-ring metalens based on two-dimensional unit splicing is proposed in this paper. In the method, the unit structure library is constructed through global traversal under the machining process constraints. The phase matching is performed for two polarization states with specific weights and the design of binary-height, concentric-ring structures with arbitrary polarization sensitivity is realized, whose focusing efficiency (the encircled power within 3×FWHM of the focal spot divided by the near-field outgoing power) is up to 90%.

View Article and Find Full Text PDF

Spatial organization and connectivity of wood rays in Pinus massoniana was comprehensively viewed and regarded as anatomical adaptions to ensure the properties of rays in xylem. Spatial organization and connectivity of wood rays are essential for understanding the wood hierarchical architecture, but the spatial information is ambiguous due to small cell size. Herein, 3D visualization of rays in Pinus massoniana was performed using high-resolution μCT.

View Article and Find Full Text PDF

Metalens, composed of arrays of nano-posts, is an ultrathin planar optical element used for constructing compact optical systems which can achieve high-performance optical imaging by wavefront modulating. However, the existing achromatic metalenses for circular polarization possess the problem of low focal efficiency, which is caused by the low polarization conversion efficiencies of the nano-posts. This problem hinders the practical application of the metalens.

View Article and Find Full Text PDF