The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW.
View Article and Find Full Text PDFThis work aimed to compare the effects of helium and air surface micro-discharge (SMD) plasma on the microbial safety and quality of beef tissues. For the beef tissue model, the concentration and diffusion depth of hydroxyl radical and ozone have different change patterns over plasma treatment time and distance in helium and air SMD plasma. The inactivation efficiency of helium plasma depended on the plasma treatment time and distance, while the inactivation efficiency of air plasma only depended on the treatment time.
View Article and Find Full Text PDFIn this study, we propose an approach to stretch or translate images using gradient-index (GRIN) elements with a rotationally symmetric shape in lens systems. In this method, the GRIN material, instead of optical surfaces, are utilized to enable a breaking of rotational symmetry for the two image translations. GRIN expression with anamorphic and tilting terms is introduced.
View Article and Find Full Text PDFWaterborne diseases caused by pathogenic microorganisms pose severe threats to human health. ZnO nanoparticles (NPs) hold great potentials as an effective, economical and eco-friendly method for water disinfection, but the exact antimicrobial mechanism of ZnO NPs under visible-light illumination is still not clear. Herein, we investigate the visible-light-driven photocatalytic inactivation mechanism of amino-functionalized hydrophilic ZnO (AH-ZnO) NPs against Staphylococcus aureus (S.
View Article and Find Full Text PDFAlthough the identification of effective reactive oxygen species (ROS) generated by plasma has been extensively studied, yet the subcellular mechanism of microbial inactivation has never been clearly elucidated in plasma disinfection processes. In this study, subcellular mechanism of yeast cell inactivation during plasma-liquid interaction was revealed in terms of comprehensive factors including cell morphology, membrane permeability, lipid peroxidation, membrane potential, intracellular redox homeostasis (intracellular ROS and HO, and antioxidant system (SOD, CAT and GSH)), intracellular ionic equilibrium (intracellular H and K) and energy metabolism (mitochondrial membrane potential, intracellular Ca and ATP level). The ROS analysis show that ·OH, O, ·Oand HO were generated in this plasma-liquid interaction system and ·Oserved as the precursor of O.
View Article and Find Full Text PDFWaterborne diseases caused by pathogenic microorganisms pose a severe threat to human health. Cold atmospheric-pressure plasma (CAP) has recently gained much interest as a promising fast, effective, economical and eco-friendly method for water disinfection. However, the antimicrobial mechanism of CAP in aqueous environments is still not clearly understood.
View Article and Find Full Text PDF