Publications by authors named "Yunze Ruan"

Unlabelled: Soil microorganisms play a crucial role in suppressing soil-borne diseases. Although the composition of microbial communities in healthy versus diseased soils is somewhat understood, the interplay between microbial interactions and disease incidence remains unclear. This study used 16S rRNA and fungal internal transcribed spacer (ITS) sequencing to investigate the bacterial and fungal community composition in three soil types: forest soil (Z), soil from healthy banana plantations (H), and soil from diseased banana plantations (D).

View Article and Find Full Text PDF

Land use changes soil microbial and chemical properties, but the mechanism of biological nitrogen fixation under different land use patterns is rarely reported, so we used four types of soil: Natural forest soil (NS), healthy banana soil (HS), diseased banana soil (DS) and paddy soil (PS). Treatments included the control (CK), addition of glucose (G), addition of glucose and ammonium nitrate (GN), addition of banana straw (BS), addition of banana straw and ammonium nitrate (BSN), addition of banana root (BR), and addition of banana root and ammonium nitrate (BRN). The study found that the change of soil utilization types, glucose addition increased carbon dioxide emissions (Compared with the control, increased by 963.

View Article and Find Full Text PDF

Soil microorganisms play an important role in soil ecosystems as the main decomposers of carbon and nitrogen. They have an indispensable impact on soil health, and any alterations in the levels of organic carbon and inorganic nitrogen can significantly affect soil chemical properties and microbial community composition. Previous studies have focused on the effects of carbon and nitrogen addition on a single type of soil, but the response of soil microorganisms to varying carbon and nitrogen inputs under different land soil use types have been relatively understudied, leaving a gap in our understanding of the key influencing factors.

View Article and Find Full Text PDF

Plant uptake of nitrogen is often associated with increased incidence of banana Fusarium wilt, a disease caused by the soil-borne fungus f. sp. tropical race 4 ( TR4).

View Article and Find Full Text PDF

Crop rotation can assemble distinct core microbiota as functionally specific barriers against the invasion of banana Fusarium oxysporum pathogens. However, the taxonomic identity of rotation-unique core taxa and their legacy effects are poorly understood under field conditions. Pepper and eggplant rotations were employed to reveal rotation crop- and banana-unique antagonistic core taxa by in situ tracking of the soil microbiome assembly patterns for 2 yr.

View Article and Find Full Text PDF

As the only "tropical base of agricultural production" in China, Hainan lsland is vigorously developing high-value agriculture and is becoming the province with the highest proportion of cash crops. However, this intensive farming with large nutrient inputs has caused cropland degradation, nitrogen (N) and phosphorus (P) overloads and water pollution, which have been reversed to initiate the construction of free trade ports. Here, we systematically review the status, driving factors, and environmental impacts of cropland degradation and nutrient overload with quantified evaluations and compared with other global tropics.

View Article and Find Full Text PDF

Background: Maintaining or improving soil chemical quality is critical for sustainable agricultural productivity and environmental safeguards. Organic fertilizer application, a common agricultural practice in banana cultivation, is often associated with greater microbial biomass and activity, which are linked to improvements in soil chemical quality. However, the effect of the duration of organic fertilizer application on soil chemical quality and whether it is microbially driven still needs to be investigated.

View Article and Find Full Text PDF

This study explored the effects of combined urea and 3,4-dimethylpyrazole phosphate (DMPP) on several components critical to the soil system: net nitrification rates; communities of targeted ammonia oxidizers [ammonia-oxidizing archaea (AOA) and bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox)]; non-targeted nitrite-oxidizing bacteria (NOB) and bacteria. We conducted the study in two contrasting soils (acidic and neutral) over the course of 28 days. Our results indicated that DMPP had higher inhibitory efficacy in the acidic soil (30.

View Article and Find Full Text PDF

Plant health is strongly impacted by beneficial and pathogenic plant microbes, which are themselves structured by resource inputs. Organic fertilizer inputs may thus offer a means of steering soil-borne microbes, thereby affecting plant health. Concurrently, soil microbes are subject to top-down control by predators, particularly protists.

View Article and Find Full Text PDF

Diazotrophs carry out biological nitrogen (N) fixation process that replenishes available soil N; it is unclear how soil diazotrophic communities respond to biochar and chemical fertilizer amendment in agricultural ecosystem. Herein, we studied the impacts of biochar and chemical fertilizer amendment on diazotrophic communities in rhizosphere and bulk soils using nifH gene. The field experiment included four treatments: control (CK), biochar (B), chemical NPK fertilizer (CF), and biochar + chemical fertilizer (B + CF).

View Article and Find Full Text PDF

Autotrophic nitrification is regulated by canonical ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). To date, most studies have focused on the role of canonical ammonia oxidizers in nitrification while neglecting the NOB. In order to understand the impacts of combined biochar and chemical fertilizer addition on nitrification and associated nitrifiers in plant rhizosphere soil, we collected rhizosphere soil from a maize field under four different treatments: no fertilization (CK), biochar (B), chemical nitrogen (N) + phosphorus (P) + potassium (K) fertilizers (NPK), and biochar + NPK fertilizers (B + NPK).

View Article and Find Full Text PDF

Background: The development of suppressive soils is a promising strategy to protect plants against soil-borne diseases in a sustainable and viable manner. The use of crop rotation and the incorporation of plant residues into the soil are known to alleviate the stress imposed by soil pathogens through dynamics changes in soil biological and physicochemical properties. However, relatively little is known about the extent to which specific soil amendments of plant residues trigger the development of plant-protective microbiomes.

View Article and Find Full Text PDF

Tomato-rice rotation is prevalent in subtropical and tropical regions in China. This practice enhances crop productivity and the disease suppression property of soils against soil-borne plant pathogens. To explore the variations and dynamics of bacterial and fungal communities, bulk soil samples were collected during two consecutive years under a rotation system between tomato and rice originated from the year of 2010 in Hainan Island, and 16S rDNA and ITS amplicons were sequenced by Illumina MiSeq.

View Article and Find Full Text PDF

Background: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e.

View Article and Find Full Text PDF

Soil-borne diseases, especially those caused by fungal pathogens, lead to profound annual yield losses. One key example for such a disease is Fusarium wilt disease in banana. In some soils, plants do not show disease symptoms, even if the disease-causing pathogens are present.

View Article and Find Full Text PDF

Banana production is seriously hindered by spp. all over the world. Endophytes are ideal candidates compared to pesticides as an environmentally benign agent.

View Article and Find Full Text PDF

The continuous cropping of banana in the same field may result in a serious soil-borne Fusarium wilt disease and a severe yield decline, a phenomenon known as soil sickness. Although soil microorganisms play key roles in maintaining soil health, the alternations of soil microbial community and relationship between these changes and soil sickness under banana monoculture are still unclear. Bacterial and fungal communities in the soil samples collected from banana fields with different monoculture spans were profiled by sequencing of the 16S rRNA genes and internal transcribed spacer using the MiSeq platform to explore the relationship between banana monoculture and Fusarium wilt disease in the present study.

View Article and Find Full Text PDF

Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE).

View Article and Find Full Text PDF

Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments were also measured using morphology and feeding-habit based classification and the PCR-DGGE method.

View Article and Find Full Text PDF

Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide.

View Article and Find Full Text PDF

A field experiment was conducted for two years to investigate the effects of different fertilization applications on the suppression of banana fusarium wilt disease, crop yield, fruit quality and culturable microflora in a banana orchard which has been monocultured with banana for 12 years and suffered serious banana fusarium wilt disease. The fertilizers included chemical fertilizer (CF), cow manure compost (CM), pig manure compost (PM) and bio-organic fertilizer (BIO). The banana soil microflora was invested using plate-counting method and culture-dependent polymerase chain reaction denaturing gradient gel electrophoresis method (CD PCR-DGGE).

View Article and Find Full Text PDF

Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression.

View Article and Find Full Text PDF

Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF).

View Article and Find Full Text PDF