Publications by authors named "Yunyun Song"

Background: Acute gastrointestinal injury (AGI) is common in intensive care unit (ICU) and worsens the prognosis of critically ill patients. The four-point grading system proposed by the European Society of Intensive Care Medicine is subjective and lacks specificity. Therefore, a more objective method is required to evaluate and determine the grade of gastrointestinal dysfunction in this patient population.

View Article and Find Full Text PDF
Article Synopsis
  • * Thirty patients participated, where the experimental group received traditional dysphagia treatment plus motor imagery for 14 days, while the control group only received conventional treatment.
  • * Results showed significant improvements in swallowing assessments and enhanced brain activation in key areas related to motor control in the experimental group, suggesting this approach could be an effective addition to dysphagia rehabilitation.
View Article and Find Full Text PDF

The orexin system participates in the regulation of depression; however, its effects show significant heterogeneity, indicating the involvement of complex downstream neural circuit mechanisms. The lateral septum (LS), located downstream of the orexin system, contributes to depression. However, the effects and mechanisms underlying the orexin-mediated modulation of the LS in patients with depression remain unclear.

View Article and Find Full Text PDF

Background: During male gametogenesis of flowering plants, sperm cell lineage (microspores, generative cells, and sperm cells) differentiated from somatic cells and acquired different cell fates. Trimethylation of histone H3 on lysine 4 (H3K4me3) epigenetically contributes to this process, however, it remained unclear how H3K4me3 influences the gene expression in each cell type. Here, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) to obtain a genome-wide landscape of H3K4me3 during sperm cell lineage development in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Although the self-transport of liquid droplets by a gradient-textured substrate can break away from the energy input, the long distance and even continuous spontaneous motion of droplets will be limited by the length in the surface-gradient direction. This article introduces a novel design with a monolayer graphene-covered multibranch gradient groove surface (GMGGS). The design aims to achieve long-distance, continuous self-transport of a mercury (Hg) droplet by merging with other mercury droplets, and the process is carried out using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

The capture and utilization of underwater fuel bubbles such as methane can alleviate the greenhouse effect, solve the global energy crisis, and possibly improve the endurance of underwater equipment. However, previous research routinely failed to achieve the integrated process of continuous adsorption, transportation, and collection of bubbles limited by the trade-off between the bubble adhesion and transport efficiency dependent on interfacial pinning, tremendously hindering the direct capture and utilization of underwater fuel bubbles. To break through this bottleneck, a magnetic-guided conical arrayed surface (CAS) associated with a laser etching technique is fabricated conveniently to realize superhydrophobicity.

View Article and Find Full Text PDF

The manipulation of fast, unidirectional motion for large droplets shows important applications in the fields of fog collection and biochemical reactions. However, driving large droplets (>5 μL) to move directionally and quickly remains challenging due to the nonnegligible volume force. Herein, we fabricated a scalable, bionic peristome substrate with a microcavity width of 180 μm using a 3D printing method, which could unidirectionally drive a large water droplet (~8 μL) at a speed reaching 12.

View Article and Find Full Text PDF

With the increasing shortage of water resources, people are seeking more innovative ways to collect fog to meet the growing need for production and the demand for livelihood. It has been proven that fog collection is efficient for collecting water in dry but foggy areas. As a hot research topic in recent years, bionic surfaces with fog collection functions have attracted widespread attention in practical applications and basic research.

View Article and Find Full Text PDF

The presence of microorganisms on biomedical devices and food packaging surfaces poses an important threat to human health. Superhydrophobic surfaces, a powerful tool to combat pathogenic bacterial adhesion, are threatened by their poor robustness. As a supplement, photothermal bactericidal surfaces may be expected to kill adhered bacteria.

View Article and Find Full Text PDF

Pollen exine is composed of finely-organized nexine, bacula and tectum, and is crucial for pollen viability and function. Pollen exine development involves a complicated molecular network that coordinates the interaction between pollen and tapetal cells, as well as the biosynthesis, transport and assembly of sporopollenin precursors; however, our understanding of this network is very limited. Here, we report the roles of PEM1, a member of methyl-CpG-binding domain family, in rice pollen development.

View Article and Find Full Text PDF

Fog collection plays an important role in alleviating the global water shortage. Despite great progress in creating bionic surfaces to collect fog, water droplets still could adhere to the microscale hydrophilic region and reach the thermodynamic stable state before falling, which delays the transport of water and hinders the continuous fog collection. Inspired by lotus leaves and cactuses, we designed a Janus membrane that functions to both collect fog from the air and transport it to a certain region.

View Article and Find Full Text PDF

Orexin has been implicated in comorbid diseases of depression, making it a promising target for anti-depression treatment. Although orexin neurons exhibit abnormal activity in depression, the neurocircuit mechanism of orexin remains unclear. As one of the important downstream factors of orexin neurons, the ventral tegmental area (VTA) is considered crucial to the mechanism of depression.

View Article and Find Full Text PDF

Biomaterial-associated infections caused by pathogenic bacteria have important implications on human health. This study presents the design and preparation of a smart surface with pH-responsive wettability. The smart surface exhibited synergistic antibacterial function, with high liquid repellency against bacterial adhesion and highly effective bactericidal activity.

View Article and Find Full Text PDF

According to the analysis to find out how demographic and clinical characteristics influent the dysphagia outcome after stroke, furthermore, giving some insights to clinical treatment.One hundred eighty post-stroke dysphagia (PSD) patients were enrolled in this retrospective study at the stroke rehabilitation department. The outcome measurements are beside water swallow test at discharge and length of stay at hospital.

View Article and Find Full Text PDF

During the sexual reproduction of higher plants, DNA methylation and transcription are broadly changed to reshape a microspore into two sperm cells (SCs) and a vegetative cell (VC). However, when and how the DNA methylation of SCs is established remains not fully understood. Here we investigate the DNA methylation (5 mC) dynamics of SC lineage and the VC in tomato using whole-genome bisulfite sequencing.

View Article and Find Full Text PDF

Soft actuators with the integration of facile preparation, rapid actuation rate, sophisticated motions, and precise control over deformation for application in complex devices are still highly desirable. Inspired by the aligned structures of moisture responsive pineal scales, an oil-triggered Janus actuator composed of a smooth hydrophobic surface and a superhydrophobic surface with aligned microchannels by simple laser etching was fabricated successfully, which can deform into various desirable shapes and recover to the original shape when triggered by oil and ethanol molecules. The aligned microchannel design causes different oil spread distances in the longitudinal and transverse directions, resulting in orientation-controlled bending and twisting with large-scale displacement.

View Article and Find Full Text PDF

Here, we reported an ingenious fabrication of moisture responsive graphene-based actuator via unilateral two-beam laser interference (TBLI) treatment of graphene oxide (GO) papers. TBLI technique has been recognized as a representative photoreduction and patterning strategy for hierarchical structuring of GO. The GO paper can be reduced and cut into grating-like periodic reduced graphene oxide (RGO) microstructures due to laser ablation effect.

View Article and Find Full Text PDF

Soft actuators have tremendous applications in diverse fields. Facile preparation, rapid actuation, and versatile actions are always pursued when developing new types of soft actuators. In this paper, we present a facile method integrating laser etching and mechanical cutting to prepare Janus actuators driven by oil.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a bioinspired hybrid wetting surface by combining PDMS and graphene on a copper mesh, mimicking how spider webs and Namib desert beetles harvest water from fog.
  • This innovative surface has both hydrophobic and superhydrophobic areas, allowing water droplets to move efficiently toward more absorbent spots, which boosts collection efficiency.
  • The material is durable, resistant to corrosion and UV exposure, and can self-repair through a simple process, making it a promising solution for enhancing fog collection technologies and promoting renewable materials.
View Article and Find Full Text PDF

Sperm cell (SC) lineage development from the haploid microspore to SCs represents a unique biological process in which the microspore generates a larger vegetative cell (VC) and a smaller generative cell (GC) enclosed in the VC, then the GC further develops to functionally specified SCs in the VC for double fertilization. Understanding the mechanisms of SC lineage development remains a critical goal in plant biology. We isolated individual cells of the three cell types, and characterized the genome-wide atlas of long non-coding (lnc) RNAs and mRNAs of haploid SC lineage cells.

View Article and Find Full Text PDF

Controlling the wettability of graphene and its derivatives is critical for broader applications. However, the dynamic dewetting performance of graphene is usually overlooked. Currently, superhydrophobic graphene with an anisotropic wettability is rare.

View Article and Find Full Text PDF

We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency.

View Article and Find Full Text PDF

We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets.

View Article and Find Full Text PDF

Background: Nursing has a high risk of job burnout, but only a few studies have explored its influencing factors from an organizational perspective.

Objective: The present study explores the impact of psychological capital on job burnout by investigating the mediating effect of organizational commitment on this relationship.

Methods: A total of 473 female nurses from four large general hospitals in Xi'an City of China were selected as participants.

View Article and Find Full Text PDF