Publications by authors named "Yunyuan Huang"

PWWP domain-containing proteins play a pivotal role in chromatin-mediated biological processes, and their aberrant regulation is linked to various human diseases. Recent years have witnessed remarkable strides in unraveling the structural and functional features of PWWP domain-containing proteins, propelling significant advances in targeting the PWWP domain-containing proteins for drug discovery purposes. Several drugs have already been approved, while others are currently in clinical trials.

View Article and Find Full Text PDF

Combination therapy is increasingly favored by pharmaceutical companies and researchers as an effective way to quickly discover new drugs with excellent efficacy, especially in the treatment of complex diseases. Previously, we successfully developed a computational screening method to identify such combinations, although it fell short in elucidating their synergistic mechanisms. In this work, we have transitioned to a highest single agent (HSA) synergy model for network screening, which streamlines the discovery of promising combinations and facilitates the investigation of their synergistic effects.

View Article and Find Full Text PDF

The pursuit of pharmacological interventions in aging aims focuses on maximizing safety and efficacy, prompting an exploration of natural products endowed with inherent medicinal properties. Subsequently, this work establishes a unique library of plant extracts sourced from Yunnan Province, China. Screening of this herbal library herein revealed that Salsola collina (JM10001) notably enhances both lifespan and healthspan in C.

View Article and Find Full Text PDF

The PWWP domain binds to both histone and DNA of a nucleosome in a bivalent way. PWWP domain-containing proteins are involved in different biological processes, and their aberrant expression is implicated in various human diseases. Here, we discuss the recent developments and challenges in targeting the PWWP domain for therapeutic intervention.

View Article and Find Full Text PDF

Ubiquitination is a fascinating post-translational modification that has received continuous attention since its discovery. In this review, we first provide a concise overview of the E3 ubiquitin ligases, delving into classification, characteristics and mechanisms of ubiquitination. We then specifically examine the ubiquitination pathways mediated by the N/C-degrons, discussing their unique features and substrate recognition mechanisms.

View Article and Find Full Text PDF

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been reapproved for heart failure (HF) therapy in patients with and without diabetes. However, the initial glucose-lowering indication of SGLT2i has impeded their uses in cardiovascular clinical practice. A challenge of SGLT2i then becomes how to separate their anti-HF activity from glucose-lowering side-effect.

View Article and Find Full Text PDF

Strategies that can selectively eliminate senescent cells (SnCs), namely senolytics, have been shown to promote healthy lifespan. However, it is challenging to achieve precise, broad-spectrum and tractable senolysis. Here, we integrate multiple technologies that combine the enzyme substrate of senescence-associated β-galactosidase (SA-β-gal) with fluorescence tag for the precise tracking of SnCs, construction of a bioorthogonal receptor triggered by SA-β-gal to target and anchor SnCs with single-cell resolution and incorporation of a selenium atom to generate singlet oxygen and achieve precise senolysis through controllable photodynamic therapy (PDT).

View Article and Find Full Text PDF
Article Synopsis
  • * Through testing 836 herbal extracts, HL0285 was identified as a potent candidate capable of extending lifespan and improving overall health, including better stress resistance and reduced neurodegenerative disease progression.
  • * The effectiveness of HL0285 was linked to the DAF-16 and HSF-1 signaling pathways, demonstrating its potential as a promising anti-aging agent for further research.
View Article and Find Full Text PDF

With a resurgence of covalent drugs, there is an urgent need for the identification of new moieties capable of cysteine bond formation. Herein, we report on the -acylamino saccharin moieties capable of novel covalent reactions with cysteine. Their utility as alternative electrophilic warheads was demonstrated through the covalent modification of fructose-1,6-bisphosphatase (FBPase), a promising target associated with cancer and type 2 diabetes.

View Article and Find Full Text PDF

Objective: To investigate the effect of venous blood carbon dioxide binding capacity (CO-CP) on the short-term prognosis of patients with acute ischemic stroke (AIS) after thrombolytic therapy.

Methods: A total of 86 AIS inpatients who received thrombolytic therapy in the emergency department of Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University from April 2019 to May 2021 were analyzed retrospectively. According to the venous blood CO-CP levels at admission, the patients were divided into two groups: low CO-CP group (CO-CP < 23 mmol/L, n = 52) and high CO-CP group (CO-CP ≥ 23 mmol/L, n = 34).

View Article and Find Full Text PDF

Depression is identified as one of the most common psychiatric symptoms in Alzheimer's disease (AD). The comorbidity of AD and depression increases the burden of clinical treatment and care in elderly patients. In order to find new treatment options, we first proposed the dual RAGE/SERT inhibitors by fusing the key pharmacophore of vilazodone and azeliragon for the potential treatment of AD with comorbid depression.

View Article and Find Full Text PDF

Combinatorial drug therapy has attracted substantial attention as an emerging strategy for the treatment of diseases with complex pathological mechanisms. We previously developed a potentially universal computational screening approach for combination drugs and used this approach to successfully identify some beneficial combinations for the treatment of heart failure. Herein, this screening approach was used to identify novel combination drugs for the treatment of epilepsy in an approved drug library.

View Article and Find Full Text PDF

Sulfonylureas are widely used oral anti-diabetic drugs. However, its long-term usage effects on patients' lifespan remain controversial, with no reports of influence on animal longevity. Hence, the anti-aging effects of chlorpropamide along with glimepiride, glibenclamide, and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K (mitoK-ATP) channels and mitochondrial complex II.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-, and C157S- revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA.

View Article and Find Full Text PDF

Depression is one of the most frequent comorbid psychiatric symptoms of Alzheimer's disease (AD), and no efficacious drugs have been approved specifically for this purpose thus far. Herein, we proposed a novel therapeutic strategy that merged the key pharmacophores of the antidepressant vilazodone (5-HT receptor partial agonist and serotonin transporter inhibitor) and the anti-AD drug donepezil (acetylcholinesterase inhibitor) together to develop a series of multi-target-directed ligands for potential therapy of the comorbidity of AD and depression. Accordingly, 55 vilazodone-donepezil chimeric derivatives were designed and synthesized, and their triple-target activities against acetylcholinesterase, 5-HT receptor, and serotonin transporter were systematically evaluated.

View Article and Find Full Text PDF

Combination drugs, characterized by high efficacy and few side effects, have received extensive attention from pharmaceutical companies and researchers for the treatment of complex diseases such as heart failure (HF). Traditional combination drug discovery depends on large-scale high-throughput experimental approaches that are time-consuming and costly. Herein we developed a novel, rapid, and potentially universal computer-guided combination drug-network-screening approach based on a set of databases and web services that are easy for individuals to obtain and operate, and we discovered for the first time that the menthol-allethrin combination screened by this approach exhibited a significant synergistic cardioprotective effect .

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase (FBPase), as a key rate-limiting enzyme in the gluconeogenesis (GNG) pathway, represents a practical therapeutic strategy for type 2 diabetes (T2D). Our previous work first identified cysteine residue 128 (C128) was an important allosteric site in the structure of FBPase, while pharmacologically targeting C128 attenuated the catalytic ability of FBPase. Herein, ten approved cysteine covalent drugs were selected for exploring FBPase inhibitory activities, and the alcohol deterrent disulfiram displayed superior inhibitory efficacy among those drugs.

View Article and Find Full Text PDF

Fructose 1,6-bisphosphatase (FBPase) has attracted substantial interest as a target associated with cancer and type 2 diabetes. Herein, we found that disulfiram and its derivatives can potently inhibit FBPase by covalently binding to a new C128 allosteric site distinct from the original C128 site in APO FBPase. Further identification of the allosteric inhibition mechanism reveals that the covalent binding of a fragment of will result in the movement of C128 and the dissociation of helix H4 (123-128), which in turn allows S123 to more easily form new hydrogen bonds with K71 and D74 in helix H3 (69-72), thereby inhibiting FBPase activity.

View Article and Find Full Text PDF

drug design actively seeks to use sets of chemical rules for the fast and efficient identification of structurally new chemotypes with the desired set of biological properties. Fragment-based design tools have been successfully applied in the discovery of noncovalent inhibitors. Nevertheless, these tools are rarely applied in the field of covalent inhibitor design.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase (FBPase) is an essential enzyme of GNG pathway. Significant advances demonstrate the FBPase plays a critical role in treatment of diabetes. Numerous FBPase inhibitors were developed by targeting AMP site, nevertheless, none of these inhibitors has exhibited suitable potency and druggability.

View Article and Find Full Text PDF

Fructose-1, 6-bisphosphatase (FBPase) has been regarded as an attractive drug target to control blood glucose against Type 2 diabetes (T2D). In this study, by using the strategy of pharmacophore-based virtual screening, a novel scaffold inhibitor targeted the AMP allosteric site of human liver FBPase were screened, their inhibitory activities were further tested. The experimental results showed that compound H27 exhibited high inhibitory activities with the IC value of 5.

View Article and Find Full Text PDF

Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site.

View Article and Find Full Text PDF