Unlabelled: Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity.
View Article and Find Full Text PDFLiver injury with concomitant loss of therapeutic transgene expression can be a clinical sequela of systemic administration of recombinant adeno-associated virus (rAAV) when used for gene therapy, and a significant barrier to treatment efficacy. Despite this, it has been difficult to replicate this phenotype in preclinical models, thereby limiting the field's ability to systematically investigate underlying biological mechanisms and develop interventions. Prior animal models have focused on capsid and transgene-related immunogenicity, but the impact of concurrently present nontransgene or vector antigens on therapeutic efficacy, such as those derived from contaminating nucleic acids within rAAV preps, has yet to be investigated.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) vectors are increasingly being used for clinical gene transfer and have shown great potential for the treatment of several monogenic disorders. However, contaminant DNA from producer plasmids can be packaged into rAAV alongside the intended expression cassette-containing vector genome. The consequences of this are unknown.
View Article and Find Full Text PDFWith clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector.
View Article and Find Full Text PDFPurpose: Osteoprotegerin (OPG) is a decoy receptor for the Receptor of NF-κB (RANK) ligand that can inhibit osteoclastogenesis. Previous studies have suggested that Mammalian Target of Rapamycin (mTOR) inhibition upregulates OPG production. We tested the hypothesis that the mTOR inhibitor rapamycin could inhibit neuroblastoma bone metastases through its action on OPG.
View Article and Find Full Text PDFIntroduction: The anti-tumor activity of angiogenesis inhibitors is often limited by the development of resistance to these drugs. Here we establish HIF-1α as a major factor in the development of this resistance in neuroblastoma xenografts.
Methods: Neuroblastoma xenografts were established by injecting unmodified SKNAS or NB-1691 cells (2 × 10(6) cells), or cells in which HIF-1α expression had been knocked down with shRNA, into the retroperitoneal space of SCID mice.
Purpose: Rapamycin inhibits vascular endothelial growth factor expression. Vascular endothelial growth factor is a tumor-elaborated protein that stimulates neovascularization. This inhibition can cause transient "normalization" of the generally dysfunctional tumor vasculature, resulting in improved tumor perfusion and oxygenation.
View Article and Find Full Text PDFBackground: Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder.
Methods: We infused a single dose of a serotype-8-pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values).
We explored adeno-associated viral vector (AAV)-mediated gene transfer in the perinatal period in animal models of severe congenital factor VII (FVII) deficiency, a disease associated with early postnatal life-threatening hemorrhage. In young adult mice with plasma FVII < 1% of normal, a single tail vein administration of AAV (1 × 10(13) vector genomes [vg]/kg) resulted in expression of murine FVII at 266% ± 34% of normal for ≥ 67 days, which mediated protection against fatal hemorrhage and significantly improved survival. Codon optimization of human FVII (hFVIIcoop) improved AAV transgene expression by 37-fold compared with the wild-type hFVII cDNA.
View Article and Find Full Text PDFBackground: High-grade glioblastomas have immature, leaky tumor blood vessels that impede the efficacy of adjuvant therapy. We assessed the ability of human interferon (hIFN)-β delivered locally via gene transfer to effect vascular stabilization in an orthotopic model of glioblastoma xenograft resection.
Methods: Xenografts were established by injecting 3 grade IV glioblastoma cell lines (GBM6-luc, MT330-luc, and SJG2-luc) into the cerebral cortex of nude rats.
Adeno-associated virus vectors (AAV) show promise for liver-targeted gene therapy. In this study, we examined the long-term consequences of a single intravenous administration of a self-complementary AAV vector (scAAV2/ 8-LP1-hFIXco) encoding a codon optimized human factor IX (hFIX) gene in 24 nonhuman primates (NHPs). A dose-response relationship between vector titer and transgene expression was observed.
View Article and Find Full Text PDFInterferon-beta (IFN-beta) has been found to have anti-tumor properties against a variety of malignancies through different mechanisms. However, clinical trials involving systemic administration of IFN-beta have been hampered by secondary toxicity and the short half-life of IFN-beta in the circulation. In order to circumvent these limitations, we have developed an adeno-associated viral (AAV) vector gene-therapy approach to deliver IFN-beta to tumors.
View Article and Find Full Text PDFBackground: We hypothesized that vascular endothelial growth factor (VEGF) contributes to autocrine stimulation of neuroblastoma and that inhibition of its signaling pathway contributes to the anticancer activity of bevacizumab, an anti-VEGF monoclonal antibody.
Methods: For in vitro studies, 2 neuroblastoma cell lines, CHLA-255 and NB1691, were treated with VEGF+/-bevacizumab. For in vivo studies, disseminated neuroblastoma was established by intravenous administration of luciferase-expressing tumor cells in SCID mice prior to bevacizumab treatment.
Background: Bortezomib is a proteasome inhibitor with pleiotropic antitumor activity. Here we investigate the antiangiogenic and antitumor efficacy of bortezomib against neuroblastoma both in vitro and in a murine model of localized and disseminated disease.
Methods: In vitro activity of bortezomib was assessed by evaluating its effect on cell proliferation and cell cycle status.
The safety and efficacy of peripheral venous administration of a self-complementary adeno-associated viral vector encoding the human FIX gene (scAAV-LP1-hFIXco) was evaluated in nonhuman primates for gene therapy of hemophilia B. Peripheral vein infusion of 1x10(12) vg/kg scAAV-LP1-hFIXco pseudotyped with serotype 8 capsid, in 3 macaques, resulted in stable therapeutic expression (more than 9 months) of human FIX (hFIX) at levels (1.1+/-0.
View Article and Find Full Text PDFTransduction with recombinant adeno-associated virus (AAV) vectors is limited by the need to convert its single-stranded (ss) genome to transcriptionally active double-stranded (ds) forms. For AAV-mediated hemophilia B (HB) gene therapy, we have overcome this obstacle by constructing a liver-restricted mini-human factor IX (hFIX) expression cassette that can be packaged as complementary dimers within individual AAV particles. Molecular analysis of murine liver transduced with these self-complementary (sc) vectors demonstrated rapid formation of active ds-linear genomes that persisted stably as concatamers or monomeric circles.
View Article and Find Full Text PDFA detailed comparison of recombinant adeno-associated viral (rAAV) vectors of serotypes 2, 5, and 8 was performed in mice and nonhuman primates. Differences within the capsid proteins and viral terminal repeats of rAAV-2 and -5 did not significantly influence their ability to transduce murine liver. However, vectors pseudotyped with AAV-8 capsid (rAAV-2/8) mediated transgene expression more rapidly and from lower doses than possible with rAAV-2 and -5, although expression declined from peak values in a distinct dose-dependent manner prior to reaching steady-state levels.
View Article and Find Full Text PDFA systematic evaluation of the influence of sex on transduction by recombinant adeno-associated viral vector (rAAV) indicated that transgene expression after liver-targeted delivery of vector particles was between 5- to 13-fold higher in male mice compared with female mice, irrespective of the proviral promoter or cDNA and mouse strain. Molecular analysis revealed that the rAAV genome was stably retained in male liver at levels that were 7-fold higher than those observed in females. Further, the sex difference in transduction was observed with AAV-2- and AAV-5-based vectors, which use distinct receptor complexes for infection.
View Article and Find Full Text PDF