Publications by authors named "Yunying Hu"

Lipid accumulation in nonadipose tissues can cause lipotoxicity, leading to cell death and severe organ dysfunction. Adipose triglyceride lipase (ATGL) deficiency causes human neutral lipid storage disease and leads to cardiomyopathy; ATGL deficiency has no current treatment. One possible approach to alleviate this disorder has been to alter the diet and reduce the supply of dietary lipids and, hence, myocardial lipid uptake.

View Article and Find Full Text PDF

Objective: Fatty acid uptake and oxidation characterize the metabolism of alternatively activated macrophage polarization in vitro, but the in vivo biology is less clear. We assessed the roles of LpL (lipoprotein lipase)-mediated lipid uptake in macrophage polarization in vitro and in several important tissues in vivo. Approach and Results: We created mice with both global and myeloid-cell specific LpL deficiency.

View Article and Find Full Text PDF

Objective: Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery.

View Article and Find Full Text PDF

Rationale: Animal models have been used to explore factors that regulate atherosclerosis. More recently, they have been used to study the factors that promote loss of macrophages and reduction in lesion size after lowering of plasma cholesterol levels. However, current animal models of atherosclerosis regression require challenging surgeries, time-consuming breeding strategies, and methods that block liver lipoprotein secretion.

View Article and Find Full Text PDF

Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs.

View Article and Find Full Text PDF

Rationale: Fatty acid oxidation is transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)α and under normal conditions accounts for 70% of cardiac ATP content. Reduced Ppara expression during sepsis and heart failure leads to reduced fatty acid oxidation and myocardial energy deficiency. Many of the transcriptional regulators of Ppara are unknown.

View Article and Find Full Text PDF

We tested whether a high fat diet (HFD) containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/-) mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd) carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR). After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD), showed regression compared to baseline.

View Article and Find Full Text PDF

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides.

View Article and Find Full Text PDF

The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets.

View Article and Find Full Text PDF

CD36 is a scavenger receptor with multiple ligands and cellular functions, including facilitating cellular uptake of free fatty acids (FFAs). Chronic alcohol consumption increases hepatic CD36 expression, leading to the hypothesis that this promotes uptake of circulating FFAs, which then serve as a substrate for triglyceride (TG) synthesis and the development of alcoholic steatosis. We investigated this hypothesis in alcohol-fed wild-type and Cd36-deficient (Cd36(-/-)) mice using low-fat/high-carbohydrate Lieber-DeCarli liquid diets, positing that Cd36(-/-) mice would be resistant to alcoholic steatosis.

View Article and Find Full Text PDF

Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction.

View Article and Find Full Text PDF

Diabetes is a major risk factor for atherosclerosis. Although atherosclerosis is initiated by deposition of cholesterol-rich lipoproteins in the artery wall, the entry of inflammatory leukocytes into lesions fuels disease progression and impairs resolution. We show that diabetic mice have increased numbers of circulating neutrophils and Ly6-C(hi) monocytes, reflecting hyperglycemia-induced proliferation and expansion of bone marrow myeloid progenitors and release of monocytes into the circulation.

View Article and Find Full Text PDF

Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT).

View Article and Find Full Text PDF

The role of serine palmitoyltransferase (SPT) and de novo ceramide biosynthesis in cardiac ceramide and sphingomyelin metabolism is unclear. To determine whether the de novo synthetic pathways, rather than ceramide uptake from circulating lipoproteins, is important for heart ceramide levels, we created cardiomyocyte-specific deficiency of Sptlc2, a subunit of SPT. Heart-specific Sptlc2-deficient (hSptlc2 KO) mice had a >35% reduction in ceramide, which was limited to C18:0 and very long chain ceramides.

View Article and Find Full Text PDF

Objective: There are several pathways that mediate the aberrant metabolism of glucose and that might induce greater vascular damage in the setting of diabetes. The polyol pathway mediated by aldose reductase (AR) has been postulated to be one such pathway. However, it has been reported that AR reduces toxic lipid aldehydes and, under some circumstances, might be antiatherogenic.

View Article and Find Full Text PDF

Diacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout ((-/-)) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1(-/-) mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1(-/-) mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1(-/-) mice.

View Article and Find Full Text PDF

Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol.

View Article and Find Full Text PDF

Lipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36(-/-)), and double knock-out (hLpL0/Cd36(-/-)-DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.

View Article and Find Full Text PDF

Aldose reductase (AR), an enzyme widely believed to be involved in the aberrant metabolism of glucose and development of diabetic complications, is expressed at low levels in the mouse. We studied whether expression of human AR (hAR), its inhibition with lidorestat, which is an AR inhibitor (ARI), and the presence of streptozotocin (STZ)-induced diabetes altered plasma fructose, mortality, and/or vascular lesions in low-density lipoprotein (LDL) receptor-deficient [Ldlr(-/-)] mice. Mice were made diabetic at 12 weeks of age with low-dose STZ treatment.

View Article and Find Full Text PDF

Ceramide is among a number of potential lipotoxic molecules that are thought to modulate cellular energy metabolism. The heart is one of the tissues thought to become dysfunctional due to excess lipid accumulation. Dilated lipotoxic cardiomyopathy, thought to be the result of diabetes and severe obesity, has been modeled in several genetically altered mice, including animals with cardiac-specific overexpression of glycosylphosphatidylinositol (GPI)-anchored human lipoprotein lipase (LpL(GPI)).

View Article and Find Full Text PDF

Objective: Patients with diabetes often have dyslipidemia and increased postprandial lipidmia. Induction of diabetes in LDL receptor (Ldlr(-/-)) knockout mice also leads to marked dyslipidemia. The reasons for this are unclear.

View Article and Find Full Text PDF

Objective: Although epidemiologic data suggest that hypertriglyceridemia and elevated plasma levels of fatty acids are toxic to arteries, in vitro correlates have been inconsistent. To investigate whether increased endothelial cell expression of lipoprotein lipase (LpL), the primary enzyme creating free fatty acids from circulating triglycerides (TG), affects vascular function, we created transgenic mice that express human LpL (hLpL) driven by the promoter and enhancer of the Tie2 receptor.

Methods And Results: Mice expressing this transgene, denoted EC-hLpL and L for low and H for high expression, had decreased plasma TG levels compared with wild-type mice (WT): 106+/-31 in WT, 37+/-17 (line H), and 63+/-31 mg/dL (line L) because of a reduction in VLDL TG; plasma cholesterol and HDL levels were unaltered.

View Article and Find Full Text PDF

Regulation of cholesterol metabolism in cultured cells and in the liver is dependent on actions of the LDL receptor. However, nonhepatic tissues have multiple pathways of cholesterol uptake. One possible pathway is mediated by LPL, an enzyme that primarily hydrolyzes plasma triglyceride into fatty acids.

View Article and Find Full Text PDF

The factors underlying cardiovascular risk in patients with diabetes have not been clearly elucidated. Efforts to study this in mice have been hindered because the usual atherogenic diets that contain fat and cholesterol also lead to obesity and insulin resistance. We compared plasma glucose, insulin, and atherosclerotic lesion formation in LDL receptor knockout (Ldlr(-/-)) mice fed diets with varying fat and cholesterol content that induced similar lipoprotein profiles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: