Publications by authors named "Yunyi Hong"

NAD (oxidized form of nicotinamide adenine dinucleotide) administration is highly beneficial in numerous models of diseases and aging. It is becoming increasingly important to determine if NAD treatment may directly increase the antioxidant capacity of cells under basal conditions. In the current study, we tested our hypothesis that NAD can directly enhance the antioxidant capacity of cells under basal conditions by using PC12 cells as a cellular model.

View Article and Find Full Text PDF

Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage.

View Article and Find Full Text PDF

SIRT2 plays important roles in multiple biological processes. It is unclear whether SIRT2 affects antioxidant capacity by modulating Nrf2, a key transcription factor for multiple antioxidant genes. By studying NADH-treated differentiated PC12 cells, we found that NADH induced a significant increase in the nuclear Nrf2, which was prevented by both SIRT2 siRNA and SIRT2 inhibitor, AGK2.

View Article and Find Full Text PDF

Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD(+)) plays critical roles in energy metabolism, mitochondrial functions, calcium homeostasis and immunological functions. Our previous studies have found that NAD(+) administration can profoundly decrease ischemic brain injury and traumatic brain injury. Our recent study has also provided first direct evidence indicating that NAD(+) treatment can decrease cellular apoptosis, while the mechanisms underlying this protective effect remain unclear.

View Article and Find Full Text PDF

NAD(+) and NADH play crucial roles in a variety of biological processes including energy metabolism, mitochondrial functions, and gene expression. Multiple studies have indicated that NAD(+) administration can profoundly decrease oxidative cell death as well as ischemic and traumatic brain injury, suggesting NAD(+) metabolism as a promising therapeutic target for cerebral ischemia and head injury. Cumulating evidence has suggested that NAD(+) can produce its protective effects by multiple mechanisms, including preventing mitochondrial alterations, enhancing energy metabolism, preventing virtually all forms of cell death including apoptosis, necrosis and autophagy, inhibiting inflammation, directly increasing antioxidation capacity of cells and tissues, and activating SIRT1.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) repletion has been shown to provide marked neuroprotection from genotoxic agent-induced neuronal and astrocyte cell death. One of the key precursors of NAD is nicotinamide mononucleotide (NMN). Therefore, it was hypothesized that NMN may attenuate apoptosis and improve energy metabolism in Parkinson's disease (PD)-like behavioral and neuropathological changes, and produce significant beneficial effects.

View Article and Find Full Text PDF

NAD(+) and NADH play pivotal roles in numerous redox reactions in cells. While increasing evidence has indicated important roles of NAD(+) in cell survival and cellular functions, there has been distinct deficiency in the studies regarding the biological functions of NADH. NADH shuttles mediate the transfer of the reducing equivalents of the cytosolic NADH into mitochondria.

View Article and Find Full Text PDF

Sirtuin 2 (SIRT2) is a member of the sirtuin family. Previous studies have suggested that SIRT2 mediates the cell death in models of Parkinson's disease and Huntington's disease. However, the role of SIRT2 in oxidative stress-induced cell death has remained unclear.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD(+)) plays critical roles in not only energy metabolism and mitochondrial functions, but also calcium homeostasis and immunological functions. It has been reported that NAD(+) administration can reduce ischemic brain damage. However, the mechanisms underlying the protective effects remain unclear.

View Article and Find Full Text PDF

Synchrotron radiation (SR) X-ray has great potential for its applications in medical imaging and cancer treatment. In order to apply SR X-ray in clinical settings, it is necessary to elucidate the mechanisms underlying the damaging effects of SR X-ray on normal tissues, and to search for the strategies to reduce the detrimental effects of SR X-ray on normal tissues. However, so far there has been little information on these topics.

View Article and Find Full Text PDF

Numerous studies have indicated that four interacting factors, including oxidative stress, mitochondrial alterations, calcium dyshomeostasis and inflammation, play crucial pathological roles in multiple major neurological diseases, including stroke, Alzheimer's disease (AD) and Parkinson's disease (PD). Increasing evidence has also indicated that NAD(+) plays important roles in not only mitochondrial functions and energy metabolism, but also calcium homeostasis and inflammation. The key NAD(+)-consuming enzyme--poly(ADP-ribose) polymerase-1 (PARP-1) and sirtuins--have also been shown to play important roles in cell death and aging, which are two key factors in the pathology of multiple major age-dependent neurological diseases: PARP-1 plays critical roles in both inflammation and oxidative stress-induced cell death; and sirtuins also mediate the process of aging, cell death and inflammation.

View Article and Find Full Text PDF

SIRT2 is a tubulin deacetylase, which can play either detrimental or beneficial roles in cell survival under different conditions. While it has been suggested that reduced SIRT2 expression in human gliomas may contribute to development of gliomas, there has been no study that directly determines the effects of decreased SIRT2 activity on the survival of glioma cells. In this study we applied both pharmacological and molecular approaches to determine the roles of SIRT2 in the survival of glioma cells.

View Article and Find Full Text PDF

Sirtuin 2 (SIRT2), a tubulin deacetylase, is a sirtuin family protein. SIRT2 inhibitors have been shown to decrease the cell death in cellular and Drosophila models of Parkinson's disease. However, SIRT2 decreases may also compromise cellular antioxidation capacity.

View Article and Find Full Text PDF

NAD+ plays important roles in various biological processes. It has been shown that NAD+ treatment can decrease genotoxic agent-induced death of primary neuronal and astrocyte cultures, and NAD+ administration can reduce ischemic brain damage. However, the effects of NAD+ treatment on tumor cell survival are unknown.

View Article and Find Full Text PDF

A rapidly growing body of information has suggested that NAD (including NAD+ and NADH) and NADP (including NADP+ and NADPH) could be new fundamental factors in cell death: Many studies have indicated key roles of poly (ADP-ribose) polymerases and sirtuins--two families of NAD-dependent enzymes--in cell death; and NAD may also affect cell survival by influencing mitochondrial permeability transition, apoptosis-inducing factor and GAPDH. NAD may further influence cell survival by its effects on calcium homeostasis, gene expression and immunological functions. Due to the crucial roles of oxidative stress in cell death, NADPH may mediate cell death by its major effects on oxidative stress: NADPH is a key factor in cellular antioxidation systems; and NADPH oxidase is also a major generator of oxidative stress.

View Article and Find Full Text PDF