Publications by authors named "Yunyan Yao"

Proximity labeling (PL) has emerged as a powerful technique for the in situ elucidation of biomolecular interaction networks. However, PL methods generally rely on single-biological-hierarchy control of spatial localization at the labeling site, which limits their application in multi-tiered biological systems. Here, we introduced another enzymatic reaction upstream of an enzyme-based PL reaction and targeted the two enzymes to markers indicating different biological hierarchies, establishing a two-level spatially localized proximity labeling (PL) platform for in situ molecular measurement and manipulation.

View Article and Find Full Text PDF

Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers.

View Article and Find Full Text PDF

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions.

View Article and Find Full Text PDF

The difficulty in elucidating the microenvironment of extracellular HO efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for HO efflux. The release of endogenous HO is used as a "physiological switch" for HRP to enable proximity labeling.

View Article and Find Full Text PDF
Article Synopsis
  • Cell surface engineering allows for the creation of custom cell interfaces, but there are limited methods for simultaneously labeling cells with multiple functions.
  • A new platform has been developed that uses aptamer-targeted peroxidase to covalently label specific cell types in mixed populations, enabling a variety of manipulations like labeling, tracking, and surface remodeling.
  • This approach allows for multiplexed labeling and the introduction of sugars to cell membranes, which can be further modified by enzymes, enhancing the potential for targeted cellular engineering.
View Article and Find Full Text PDF

Interfaces between materials with differently ordered phases present unique opportunities for exotic physical properties, especially the interplay between ferromagnetism and superconductivity in the ferromagnet/superconductor heterostructures. The investigation of zero- and π-junctions has been of particular interest for both fundamental physical science and emerging technologies. Here, we report the experimental observation of giant oscillatory Gilbert damping in the superconducting niobium/nickel-iron/niobium junctions with respect to the nickel-iron thickness.

View Article and Find Full Text PDF

Fundamental symmetry breaking and relativistic spin-orbit coupling give rise to fascinating phenomena in quantum materials. Of particular interest are the interfaces between ferromagnets and common s-wave superconductors, where the emergent spin-orbit fields support elusive spin-triplet superconductivity, crucial for superconducting spintronics and topologically-protected Majorana bound states. Here, we report the observation of large magnetoresistances at the interface between a quasi-two-dimensional van der Waals ferromagnet FeTaS and a conventional s-wave superconductor NbN, which provides the possible experimental evidence for the spin-triplet Andreev reflection and induced spin-triplet superconductivity at ferromagnet/superconductor interface arising from Rashba spin-orbit coupling.

View Article and Find Full Text PDF

Organic prodrugs have been widely reported to avoid side effects and have been applied for precise tumor therapy in recent years. However, inorganic nano-prodrugs with localized generation of toxic products in the tumor have not been reported. Herein, we report an inorganic nano-prodrug, tellurium nanowires (TeNWs), that generate toxic TeO triggered by hydrogen peroxide (HO) for highly selective cancer chemotherapy.

View Article and Find Full Text PDF

Inducing magnetic orders in a topological insulator (TI) to break its time reversal symmetry has been predicted to reveal many exotic topological quantum phenomena. The manipulation of magnetic orders in a TI layer can play a key role in harnessing these quantum phenomena toward technological applications. Here we fabricated a thin magnetic TI film on an antiferromagnetic (AFM) insulator CrO layer and found that the magnetic moments of the magnetic TI layer and the surface spins of the CrO layers favor interfacial AFM coupling.

View Article and Find Full Text PDF

This work demonstrates markedly modified spin dynamics of magnetic insulator (MI) by the spin momentum-locked Dirac surface states of the adjacent topological insulator (TI), which can be harnessed for spintronic applications. As the Bi concentration is systematically tuned in 5-nm-thick (Bi Sb )Te TI films, the weight of the surface relative to bulk states peaks at = 0.32 when the chemical potential approaches the Dirac point.

View Article and Find Full Text PDF

Spin superfluid is a novel emerging quantum matter arising from the Bose-Einstein condensate (BEC) of spin-1 bosons. We demonstrate the spin superfluid ground state in canted antiferromagnetic CrO thin film at low temperatures via nonlocal spin transport. A large enhancement of the nonlocal spin signal is observed below ~20 K, and it saturates from ~5 down to 2 K.

View Article and Find Full Text PDF

Ionic liquid gating can markedly modulate a material's carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont6a3hd7dhn6fd8l6h06k6066iaoqg8ns): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once