The high-density defect states existing at the grain boundaries and heterojunction interfaces induce nonradiative charge recombination and ion migration processes within perovskite film, which seriously impair the device efficiency and stability. Here, we propose a novel synergistic ion-anchoring passivation (SIP) strategy for high-performance perovskite solar cells, by designing a multifunctional molecule to heal the charged defects via electrostatic interactions. The anion and cation species of the multifunctional molecule are rationally screened via high-throughput DFT simulation and experimental verification, which act as efficient surface passivation agents to heal the lead- and iodine-related defects.
View Article and Find Full Text PDFCopper and iron are the basic metal elements that have attracted much attention in industry. Prussian blue (PB) is a significant class of metal-organic frameworks (MOFs); however, the lack of such linkages between the structure and properties, as well as properties differences, limits their potential applications. In this paper, the Cu-based Prussian blue nanocubes with and without Fe doping were synthesized.
View Article and Find Full Text PDFPolarization-sensitive photodetectors are the core of optics applications and have been successfully demonstrated in photodetectors based on the newly-emerging metal-halide perovskites. However, achieving high polarization sensitivity is still extremely challenging. In addition, most of the previously reported photodetectors were concentrated on 1D lead-halide perovskites and 2D asymmetric intrinsic structure materials, but suffered from being external bias driven, lead-toxicity, poor stability and complex processes, severely limiting their practical applications.
View Article and Find Full Text PDF