Recently published near full-length KSHV genomes from a Cameroon Kaposi sarcoma case-control study showed strong evidence of viral recombination and mixed infections, but no sequence variations associated with disease. Using the same methodology, an additional 102 KSHV genomes from 76 individuals with KSHV-associated diseases have been sequenced. Diagnoses comprise all KSHV-associated diseases (KAD): Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated large cell lymphoma (KSHV-LCL), a type of multicentric Castleman disease (KSHV-MCD), and KSHV inflammatory cytokine syndrome (KICS).
View Article and Find Full Text PDFMammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood.
View Article and Find Full Text PDFImmunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in DNMT3B, ZBTB24, CDCA7, or HELLS. While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype.
View Article and Find Full Text PDFUracil DNA glycosylase (UNG) removes mutagenic uracil base from DNA to initiate base excision repair (BER). The result is an abasic site (AP site) that is further processed by the high-fidelity BER pathway to complete repair and maintain genome integrity. The gammaherpesviruses (GHVs), human Kaposi sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68) encode functional UNGs that have a role in viral genome replication.
View Article and Find Full Text PDFAntibodies are powerful tools to detect expressed proteins. However off-target recognition can confound their use. Therefore, careful characterization is needed to validate specificity in distinct applications.
View Article and Find Full Text PDFUnlabelled: Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in or . While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype.
View Article and Find Full Text PDF(WW domain containing oxidoreductase) expression loss is common in various cancers and characteristic of poor prognosis. Deletions, translocations, and loss of expression affecting the gene are a common feature of various B cell neoplasms such as certain B cell lymphomas and multiple myeloma. However, the role of this common abnormality in B cell tumor initiation and/or progression has not been defined.
View Article and Find Full Text PDFMisincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined.
View Article and Find Full Text PDFMol Cell Oncol
September 2018
The mutations induced by activation-induced cytidine deaminase (AID) trigger antibody diversification but can cause genome instability. We find that AID phosphorylation is an important determinant of "off-target" mutagenesis and identify a drug that increases this activity. These studies demonstrate how dysregulating AID phosphorylation can promote oncogenesis.
View Article and Find Full Text PDFActivation-induced cytidine deaminase (AID) is a mutator enzyme that targets immunoglobulin (Ig) genes to initiate antibody somatic hypermutation (SHM) and class switch recombination (CSR). Off-target AID association also occurs, which causes oncogenic mutations and chromosome rearrangements. However, AID occupancy does not directly correlate with DNA damage, suggesting that factors beyond AID association contribute to mutation targeting.
View Article and Find Full Text PDFImproving our understanding of the role of chromatin regulators in the initiation, development, and suppression of cancer and other devastating diseases is critical, as they are integral players in regulating DNA integrity and gene expression. Developing small molecule inhibitors for this target class with cellular activity is a crucial step toward elucidating their specific functions. We specifically targeted the DNA damage response protein, 53BP1, which uses its tandem tudor domain to recognize histone H4 dimethylated on lysine 20 (H4K20me2), a modification related to double-strand DNA breaks.
View Article and Find Full Text PDFAlthough a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ.
View Article and Find Full Text PDFHyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III).
View Article and Find Full Text PDFA complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell-free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides.
View Article and Find Full Text PDFObjective: To investigate the association between the mutations in lipoprotein lipase gene and hypertriglyceridemia (HTG).
Methods: The lipoprotein lipase (LPL) gene was screened for mutations in 386 Chinese subjects with (108 cases in the HTG group) or without HTG (278 cases in the control group), by single-strand conformation polymorphism (SSCP) analysis and DNA sequencing.
Results: One novel silent mutation L103L, one missense mutation P207L, three splicing mutations Int3/3'-ass/C(-6) --> T, and the common S447X polymorphism has been identified in the whole coding region and exon-intron junctions of the LPL gene were examined.
Stimulation of protective immune responses against intracellular pathogens is difficult to achieve using non-replicating vaccines. BALB/c mice immunized by intramuscular injection with killed Francisella tularensis (live vaccine strain) adjuvanted with preformed immune stimulating complexes admixed with CpG, were protected when systemically challenged with a highly virulent strain of F. tularensis (Schu S4).
View Article and Find Full Text PDFThe eradication of smallpox by vaccination with vaccinia virus was probably one of the greatest achievements of vaccinology. However, the immunological basis of this protection is not fully understood. To this end, we have used protein microarrays of the vaccinia (Western Reserve, WR) proteome to profile antibody reactivities after primary infection or boosting with the licensed smallpox vaccine, Dryvax, and with archival convalescent smallpox sera.
View Article and Find Full Text PDFMotivation: We present a study of antigen expression signals from a newly developed high-throughput protein microarray technique. These signals are a measure of antibody-antigen binding activity and provide a basis for understanding humoral immune responses to various infectious agents and supporting vaccine and diagnostic development.
Results: We investigate the characteristics of these expression profiles and show that noise models, normalization, variance estimation and differential expression analysis techniques developed in the context of DNA microarray analysis can be adapted and applied to these protein arrays.
The smallpox vaccine is the prototypic vaccine, yet the viral targets critical for vaccine-mediated protection remain unclear in humans. We have produced protein microarrays of a near-complete vaccinia proteome and used them to determine the major antigen specificities of the human humoral immune response to the smallpox vaccine (Dryvax). H3L, an intracellular mature virion envelope protein, was consistently recognized by high-titer antibodies in the majority of human donors, particularly after secondary immunization.
View Article and Find Full Text PDFDespite the increasing availability of genome sequences from many human pathogens, the production of complete proteomes remains at a bottleneck. To address this need, a high-throughput PCR recombination cloning and expression platform has been developed that allows hundreds of genes to be batch-processed by using ordinary laboratory procedures without robotics. The method relies on high-throughput amplification of each predicted ORF by using gene specific primers, followed by in vivo homologous recombination into a T7 expression vector.
View Article and Find Full Text PDF