Publications by authors named "Yunxia Vivian Bi"

The aim of this study was to develop a hydrophilic oral controlled release system (CRS) using the amorphous form of gliclazide, a BCS class II compound, listed on the WHO list of essential medicines. For this purpose, spray-dried dispersions (SDDs) of gliclazide were produced using various grades of hydroxypropyl methylcellulose acetate succinate (HPMCAS) or copovidone as carrier under fully automated conditions. The solid-state properties of prepared SDDs were characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Spray dried dispersions (SDDs) of glipizide, a BCS Class II model drug, were prepared using various grades of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and copovidone S-630 as carriers. The SDDs appeared as a single amorphous phase with up to 60% drug loading level as revealed by X-ray powder diffraction (XRPD), modulated differential scanning calorimetry (mDSC) and scanning electron microscopy (SEM). Supersaturated micro-dissolution testing of various SDDs in fasted state simulated intestinal fluid showed prolonged supersaturation state (up to 180min) with solubility increases of 5.

View Article and Find Full Text PDF

Objectives: This study focuses on the application of hot melt extrusion (HME) to produce solid dispersions containing griseofulvin (GF) and investigates the in-vitro dissolution performance of HME powders and resulting tablet compositions containing HME-processed dispersions.

Methods: Binary, ternary and quaternary dispersions containing GF, enteric polymer (Eudragit L100-55 or AQOAT-LF) and/or vinyl pyrrolidone-based polymer (Plasdone K-12 povidone or S-630 copovidone) were processed by HME. Two plasticizers, triethyl citrate (TEC) and acetyl tributyl citrate (ATBC), were incorporated to aid in melt processing and to modify release of GF in neutral media following a pH-change in dissolution.

View Article and Find Full Text PDF