The relationship between chemodiversity and microbial succession in wastewater treatment plants (WWTPs) is highly intricate and bidirectional. The specific contribution of the microbial community to changes in the composition of dissolved organic matter (DOM) within different biological treatment units remains unclear, as does the reciprocal influence of DOM composition on microbial succession. In this study, spectroscopy ((Excitation-emission matrix) EEM-PARAFAC, Ultraviolet (UV)-spectrum, Fourier transform infrared spectrometer (FT-IR)), Liquid chromatograph mass spectrometer (LC‒MS) and Fourier transform ion cyclotron resonance (FT-ICR) MS along with high-throughput sequencing technology were used to explore the relationship between chemodiversity and microbial succession in WWTPs concerning seasonal changes.
View Article and Find Full Text PDFDangerous biological agents (DBAs) refer to microorganisms, toxins, and other biological substances that have the potential to cause significant harm to humans, animals, plants, and the environment. They are the primary target of the prevention and response in China's Biosafety Law, and it is of great importance to clarify the characteristics of DBAs in the Beijing suburban rivers for the insurance of the water safety in Beijing. The typical Beijing suburban rivers (Mangniu River, Chaohe River, and Baihe River) were selected, and the occurrence and distribution of DBAs concerning the molecular biology composition as the nucleic acid (antibiotic resistance genes, ARGs), nucleic acid and proteins (viruses), and intact cellular structures (pathogens) were determined based on the metagenomics.
View Article and Find Full Text PDFThe dynamics of the composition and antibiotic resistance of the fecal coliform bacteria (FCB) in a typical wastewater treatment plant (WWTP) were investigated concerning the seasonal changes. Results showed that WWTP could remove the FCB concentration by 3∼5 logs within the effluent of 10∼10 CFU/L, but the antibiotic resistant rate of FCB species increased significantly after WWTP. The dominant FCB changed from Escherichia coli in the influent (∼73.
View Article and Find Full Text PDFPurpose: Conventional cephalomedullary nails (CMNs) are commonly employed for internal fixation in the treatment of reverse obliquity intertrochanteric (ROI) fractures. However, the limited effectiveness of conventional CMNs in addressing ROI fractures results in significant implant-related complications. To address challenges associated with internal fixation, a novel Proximal Femoral Bionic Nail (PFBN) has been developed.
View Article and Find Full Text PDFBiosensors (Basel)
September 2023
Given the advancements in modern living standards and technological development, conventional smart devices have proven inadequate in meeting the demands for a high-quality lifestyle. Therefore, a revolution is necessary to overcome this impasse and facilitate the emergence of flexible electronics. Specifically, there is a growing focus on health detection, necessitating advanced flexible preparation technology for biosensor-based smart wearable devices.
View Article and Find Full Text PDFScand Stat Theory Appl
December 2021
We apply a three-step sequential procedure to estimate the change-point of count time series. Under certain regularity conditions, the estimator of change-point converges in distribution to the location of the maxima of a two-sided random walk. We derive a closed-form approximating distribution for the maxima of the two-sided random walk based on the invariance principle for the strong mixing processes, so that the statistical inference for the true change-point can be carried out.
View Article and Find Full Text PDFObjective: To using finite element analysis to investigate the effects of the traditional titanium alloy Gamma nail and a biodegradable magnesium alloy bionic Gamma nail for treating intertrochanteric fractures.
Methods: Computed tomography images of an adult male volunteer of appropriate age and in good physical condition were used to establish a three-dimensional model of the proximal femur. Then, a model of a type 31A1 intertrochanteric fracture of the proximal femur was established, and the traditional titanium alloy Gamma nails and biodegradable magnesium alloy bionic Gamma nails were used for fixation, respectively.
Femoral shaft fracture is one of the most common types of fracture encountered in the clinic. For certain complex femoral shaft fractures, the traditional intramedullary nail may not provide sufficient stability. Therefore, novel intramedullary nail systems are required.
View Article and Find Full Text PDFBackground: To compare the stability of sacroiliac joint disruption fixed with three kinds of internal fixation using both biomechanical test and finite element analysis.
Methods: Five embalmed specimens of an adult were used. The symphysis pubis rupture and left sacroiliac joint disruption were created.
BACKGROUND Clinical studies indicate that in total ankle arthroplasty, postoperative implant subsidence and medial tilt become two significant concerns of the ankle replacement system, and which are associated with the contact between the bones and the talar component. Up to now, little attention has focused on the contact between the bones and the talar component. MATERIAL AND METHODS In order to address implant subsidence and medial tilt, one three-dimensional finite element model of contact between the bone and the talar components was built with the material properties of the cancellous bone interpolated from the experimental data, which represents variation of material properties through the cancellous bones.
View Article and Find Full Text PDFBackground: Unstable pelvic fractures are complex and serious injuries. Selection of a fixation method for these fractures remains a challenging problem for orthopedic surgeons. This study aimed to compare the stability of Tile C pelvic fractures fixed with two iliosacral (IS) screws and minimally invasive adjustable plate (MIAP) combined with one IS screw.
View Article and Find Full Text PDF