Histamine is a biogenic amine found in fish-derived and fermented food products with physiological relevance since its concentration is proportional to food spoilage and health risk for sensitive consumers. There are various analytical methods for histamine quantification from food samples; however, a simple and quick enzymatic detection and quantification method is highly desirable. Histamine dehydrogenase (HDH) is a candidate for enzymatic histamine detection; however, other biogenic amines can change its activity or produce false positive results with an observed substrate inhibition at higher concentrations.
View Article and Find Full Text PDFOxyfunctionalization of non-activated carbon bonds by P450 monooxygenases has drawn great industrial attraction. Self-sufficient P450s containing catalytic heme and reductase domains in a single polypeptide chain offer many advantages since they do not require external electron transfer partners. Here, we report the first P450 enzyme identified and expressed from Azorhizobium caulinodans.
View Article and Find Full Text PDFThe complete enzymatic degradation of lignocellulosic biomass requires the cooperative action of cellulosic, hemicellulosic, and lignolytic enzymes such as cellulase, xylanase, laccase, galactosidase, and arabinofuranosidase. Arabinofuranosidases (E.C 3.
View Article and Find Full Text PDFHydroxy- or ketone- functionalized fatty acid methyl esters (FAMEs) are important compounds for production of pharmaceuticals, vitamins, cosmetics or dietary supplements. Biocatalysis through enzymatic cascades has drawn attention to the efficient, sustainable, and greener synthetic processes. Furthermore, whole cell catalysts offer important advantages such as cofactor regeneration by cell metabolism, omission of protein purification steps and increased enzyme stability.
View Article and Find Full Text PDFThe zinc-dependent medium-chain alcohol dehydrogenase from Rhodococcus erythropolis (ReADH) is one of the most versatile biocatalysts for the stereoselective reduction of ketones to chiral alcohols. Despite its known broad substrate scope, ReADH only accepts carbonyl substrates with either a methyl or an ethyl group adjacent to the carbonyl moiety; this limits its use in the synthesis of the chiral alcohols that serve as a building blocks for pharmaceuticals. Protein engineering to expand the substrate scope of ReADH toward bulky substitutions next to carbonyl group (ethyl 2-oxo-4-phenylbutyrate) opens up new routes in the synthesis of ethyl-2-hydroxy-4-phenylbutanoate, an important intermediate for anti-hypertension drugs like enalaprilat and lisinopril.
View Article and Find Full Text PDFPositions identified in directed evolution campaigns or by (semi)rational design can be recombined iteratively or simultaneously. Iterative recombination has yielded many success stories and is beneficially used if screening capabilities are limited (four iterative SSMs generate 20×4=80 different enzyme variants). Simultaneous site saturation mutagenesis offers significantly higher diversity (20 =160 000 variants) and enables greater improvements to be found, especially if the selected positions are in close proximity to each other (cooperative effects).
View Article and Find Full Text PDFExpanding the substrate scope of enzymes opens up new routes for synthesis of valuable chemicals. Ketone-functionalized fatty acid derivatives and corresponding chiral alcohols are valuable building blocks for the synthesis of a variety of chemicals including pharmaceuticals. The alcohol dehydrogenase from Candida parapsilosis (cpADH5) catalyzes the reversible oxidations of chiral alcohols and has a broad substrate range; a challenge for cpADH5 is to convert alcohols with small substituents (methyl or ethyl) next to the oxidized alcohol moiety.
View Article and Find Full Text PDFZinc-dependent medium chain reductase from Candida parapsilosis can be used in the reduction of carbonyl compounds to pharmacologically important chiral secondary alcohols. To date, the nomenclature of cpADH5 is differing (CPCR2/RCR/SADH) in the literature, and its natural substrate is not known. In this study, we utilized a substrate docking based virtual screening method combined with KEGG, MetaCyc pathway, and Candida genome databases search for the discovery of natural substrates of cpADH5.
View Article and Find Full Text PDF