Publications by authors named "Yuntong Dai"

Currently, the goal of achieving net-zero emissions for ships presents a significant challenge to CO reduction policies. A comprehensive analysis of ship air pollutants and CO emissions is crucial for mitigating greenhouse effect and air pollution. To realize the overall control policies of ship emissions, this study established a high-resolution emissions inventory for air pollutants (CO, HC, NOx, PM, PM, SO) and CO from 11 types of ships in Shanghai, and conducted analyses of spatiotemporal characteristics, spatial heterogeneity and consistency, and synergistic effects.

View Article and Find Full Text PDF

Self-oscillation enables continuous motion by transforming constant external stimuli into mechanical work, eliminating the necessity for supplementary control systems. This holds considerable promise in domains like actuators, wearable devices and biomedicine. In the current study, a novel suspended liquid crystal elastomer (LCEs) ball system consisting of a light-responsive hollow LCE ball and an air blower is constructed.

View Article and Find Full Text PDF

Industrial parks, under the framework of the "enterprise relocation to parks" policy, have become a crucial cornerstone of China's industrial green development and play a key role in reducing pollution and mitigating carbon emissions . Taking a chemical industrial park in Shanghai as a case study, this study employed the Tapio-CCD model to explore the synergistic relationships among pollutants, and between the economy and pollutants. Additionally, the DDF-Tobit model was used to investigate the impact of Zero Waste City (ZWC) policy and the synergy of carbon and pollution control on green development in the chemical industrial park.

View Article and Find Full Text PDF

Optically responsive liquid crystal elastomer (LCE) devices have thriving potential to flourish in soft robots and microdrives, owing to their advantages of remote controllability, structural simplicity, and no power supply. In terms of illumination-driven modes, most research has focused on the dynamic response of LCE devices under continuous and periodic illumination, while the theoretical study of the dynamic response under moving illumination is limited. In this paper, based on the coupling of LCE and mechanical deformation under moving illumination, the dynamic model of a LCE simply supported beam is built to investigate its dynamic response under moving illumination.

View Article and Find Full Text PDF

Active materials possess unique properties of being able to respond autonomously to external stimuli, yet realizing and regulating the motion behavior of active machines remains a major challenge. Conventional control approaches, including sensor control and external device control, are both complex and difficult to implement. In contrast, active materials-based self-oscillators offer distinct properties such as periodic motion and ease of regulation.

View Article and Find Full Text PDF

Self-oscillating systems possess the ability to convert ambient energy directly into mechanical work, and new types of self-oscillating systems are worth designing for practical applications in energy harvesters, engines and actuators. Taking inspiration from the four-stroke engine. A concept for a self-rotating engine is presented on the basis of photothermally responsive materials, consisting of a liquid crystal elastomer (LCE) fiber, a hinge and a turnplate, which can self-rotate under steady illumination.

View Article and Find Full Text PDF

Self-oscillating systems can directly convert ambient energy to mechanical work, and new type self-oscillating systems are worth designing for applications in energy harvesters, engines, and actuators. Taking inspiration from the hand drill, we have developed a novel self-rotating drill system, which is consist of a turnplate and a liquid crystal elastomer (LCE) fiber under steady illumination. To investigate the self-rotating behaviors of the LCE drill, we have proposed a nonlinear theoretical model of the LCE drill under steady illumination based on the well-established dynamic LCE model.

View Article and Find Full Text PDF

Self-excited motions, characterized by their ability to harness energy from a consistent environment and self-regulate, exhibit significant potential in micro-devices, autonomous robotics, sensor technology, and energy generation. This study introduces an innovative turntable system based on an electrothermally responsive liquid crystal elastomer (LCE). This system facilitates self-rotation within a steady-state circuit.

View Article and Find Full Text PDF

Self-sustained chaotic jumping systems composed of active materials are characterized by their ability to maintain motion through drawing energy from the steady external environment, holding significant promise in actuators, medical devices, biomimetic robots, and other fields. In this paper, an innovative light-powered self-sustained chaotic jumping system is proposed, which comprises a liquid crystal elastomer (LCE) balloon and an elastic substrate. The corresponding theoretical model is developed by combining the dynamic constitutive model of an LCE with Hertz contact theory.

View Article and Find Full Text PDF

Light sources that switch periodically over time have a wide range of application value in life and engineering, and generally require additional controller to periodically switch circuits to achieve periodic lighting. In this paper, a self-oscillating spring oscillator based on optically responsive liquid crystal elastomer (LCE) fiber is constructed, which consists of a embedded light source and a LCE fiber. The spring oscillator can oscillate autonomously to achieve periodic switching of the light source.

View Article and Find Full Text PDF

In megacities, vehicle emissions face urgent challenges related to air pollution and CO control. To achieve the refinement of vehicle control policies for the co-control of air pollutants and CO, this study established a vehicle emission inventory with high spatial and temporal resolution based on the hourly traffic flow in Shanghai and analyzed the spatial and temporal distribution characteristics of the real-time vehicle emissions. Meanwhile, a policy evaluation framework was constructed by combining pollutant emission predictions with quantitative co-control effect assessments.

View Article and Find Full Text PDF

Achieving and controlling the desired movements of active machines is generally accomplished through precise control of artificial muscles in a distributed and serialized manner, which is a significant challenge. The emerging motion control strategy based on self-oscillation in active machines has unique advantages, including directly harvesting energy from constant ambient light, and it has no need for complex controllers. Inspired by the roller, we have innovatively developed a self-rolling roller that consists of a roller and a liquid crystal elastomer (LCE) fiber.

View Article and Find Full Text PDF

Self-vibrating systems based on active materials have been widely developed, but most of the existing self-oscillating systems are complex and difficult to control. To fulfill the requirements of different functions and applications, it is necessary to construct more self-vibrating systems that are easy to control, simple in material preparation and fast in response. This paper proposes a liquid crystal elastomer (LCE) string-mass structure capable of continuous vibration under steady illumination.

View Article and Find Full Text PDF

A new type of self-oscillating system has been developed with the potential to expand its applications in fields such as biomedical engineering, advanced robotics, rescue operations, and military industries. This system is capable of sustaining its own motion by absorbing energy from the stable external environment without the need for an additional controller. The existing self-sustained oscillatory systems are relatively complex in structure and difficult to fabricate and control, thus limited in their implementation in practical and complex scenarios.

View Article and Find Full Text PDF
Article Synopsis
  • Self-oscillating coupled machines can harness energy from their environment, enhancing their autonomy and portability, which is pivotal for exploring synchronization and clustering.
  • The study models two self-oscillators linked by springs, elucidating their self-oscillation and synchronization mechanisms, revealing that system parameters adjust the behavior between in-phase and anti-phase synchronization modes.
  • The research also examines how varying parameters like the LCE elastic coefficient affect the oscillators' amplitudes and frequencies, aiming to improve understanding for applications in energy harvesting, robotics, and medical devices.
View Article and Find Full Text PDF

Self-oscillation is the autonomous maintenance of continuous periodic motion through energy absorption from non-periodic external stimuli, making it particularly attractive for fabricating soft robots, energy-absorbing devices, mass transport devices, and so on. Inspired by the self-oscillating system that presents high degrees of freedom and diverse complex oscillatory motions, we created a self-oscillating helical spring oscillator with combined tension and torsion under steady illumination, among which a mass block and a liquid crystal elastomer (LCE) helical spring made with LCE wire are included. Considering the well-established helical spring model and the dynamic LCE model, a nonlinear dynamic model of the LCE helical spring oscillator under steady illumination is proposed.

View Article and Find Full Text PDF

The synchronization and group behaviors of self-excited coupled oscillators are common in nature and deserve to be explored, for self-excited motions have the advantages of actively collecting energy from the environment, being autonomous, making equipment portable, and so on. Based on light-powered self-excited oscillators composed of liquid crystal elastomer (LCE) bars, the synchronization of two self-excited coupled oscillators is theoretically studied. Numerical calculations show that self-excited oscillations of the system have two synchronization modes, in-phase mode and anti-phase mode, which are mainly determined by their interaction.

View Article and Find Full Text PDF

The oscillations of electrically actuated thermally-responsive liquid crystal elastomer (LCE) microfibers under cyclic electric actuation have been discovered in recent experiments. Periodic electric actuation is a common method of active control with potential applications in the fields of micro-actuators. In this paper, the vibration behavior of LCE spring oscillator under periodic electrothermal drive is studied theoretically.

View Article and Find Full Text PDF

Self-excited oscillations have the advantages of absorbing energy from a stable environment and Self-control; therefore, Self-excited motion patterns have broader applications in micro devices, autonomous robots, sensors and energy-generating devices. In this paper, a Self-sustained curling liquid crystal elastomer (LCE) film-mass system is proposed on the basis of electrothermally responsive materials, which can realize Self-oscillation under a steady-state current. Based on the contact model and dynamic LCE model, a nonlinear dynamics model of LCE film in steady-state circuits is developed and numerical calculations are carried out using the Runge-Kutta method.

View Article and Find Full Text PDF

Self-sustained chaotic system has the capability to maintain its own motion through directly absorbing energy from the steady external environment, showing extensive application potential in energy harvesters, self-cleaning, biomimetic robots, encrypted communication and other fields. In this paper, a novel light-powered chaotic self-floating system is proposed by virtue of a nonlinear spring and a liquid crystal elastomer (LCE) balloon, which is capable of self-floating under steady illumination due to self-beating. The corresponding theoretical model is formulated by combining dynamic LCE model and Newtonian dynamics.

View Article and Find Full Text PDF

Self-oscillation absorbs energy from a steady environment to maintain its own continuous motion, eliminating the need to carry a power supply and controller, which will make the system more lightweight and promising for applications in energy harvesting, soft robotics, and microdevices. In this paper, we present a self-oscillating curling liquid crystal elastomer (LCE) beam-mass system, which is placed on a table and can self-oscillate under steady light. Unlike other self-sustaining systems, the contact surface of the LCE beam with the tabletop exhibits a continuous change in size during self-sustaining curling, resulting in a dynamic boundary problem.

View Article and Find Full Text PDF

Self-sustained oscillations can directly absorb energy from the constant environment to maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon, the Euler compression rod can rapidly release elastic strain energy and undergo large displacement during buckling. In addition, its boundary configuration is usually easy to be modulated.

View Article and Find Full Text PDF

Self-sustained motion can take advantage of direct energy extraction from a steady external environment to maintain its own motion, and has potential applications in energy harvesting, robotic motion, and transportation. Recent experiments have found that a thermally responsive rod can perform self-sustained rolling on a flat hot plate with an angular velocity determined by the competition between the thermal driving moment and the friction moment. A rod with a hollow cross section tends to greatly reduce the frictional resistance, while promising improvements in thermal conversion efficiency.

View Article and Find Full Text PDF

To address the limitations of conventional stereo-digital image correlation (DIC) on measuring complex objects, a continuous-view multi-camera DIC (MC-DIC) system and its two forms of camera arrangement are introduced. Multiple cameras with certain overlapping field of view are calibrated simultaneously to form an overall system for measuring the continuous full-surface deformation. The bending experiment of coral aggregate concrete beam and the axial compression experiment of timber column are conducted to verify the capability of continuous-view MC-DIC in deformation measurement of civil components with large slenderness ratio and large curvature, respectively.

View Article and Find Full Text PDF

Self-oscillation capable of maintaining periodic motion upon constant stimulus has potential applications in the fields of autonomous robotics, energy-generation devices, mechano-logistic devices, sensors, and so on. Inspired by the active jumping of kangaroos and frogs in nature, we proposed a self-jumping liquid crystal elastomer (LCE) balloon under steady illumination. Based on the balloon contact model and dynamic LCE model, a nonlinear dynamic model of a self-jumping LCE balloon under steady illumination was formulated and numerically calculated by the Runge-Kutta method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2l99h3mvq1v3kikeuiock07l4pjc7asa): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once