Publications by authors named "Yunting Pu"

Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples.

View Article and Find Full Text PDF

Autophagy is a key process for degradation and recycling of proteins or organelles in eukaryotes. Autophagy in plants has been shown to function in stress responses, pathogen immunity, and senescence, while a basal level of autophagy plays a housekeeping role in cells. Upon activation of autophagy, vesicles termed autophagosomes are formed to deliver proteins or organelles to the vacuole for degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Autophagy is a recycling process in cells that helps them stay healthy, especially during tough conditions.
  • TOR is a protein that controls autophagy and plant growth, and it can be influenced by special plant hormones called brassinosteroids (BRs).
  • The study shows how TOR and BR work together to balance plant growth and the response to stress by either activating or blocking autophagy depending on the presence of BRs.
View Article and Find Full Text PDF

Excessive accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to a potentially cytotoxic condition known as the ER stress. Upon ER stress, cells initiate a homeostatic response called unfolded protein response (UPR) to assist proper folding the unfolded or misfolded proteins. Proteomics have been broadly used in plants with Liquid Chromatography coupled to tandem MS (LC-MS/MS) technologies.

View Article and Find Full Text PDF

The unfolded protein response (UPR), a highly conserved set of eukaryotic intracellular signaling cascades, controls the homeostasis of the endoplasmic reticulum (ER) in normal physiological growth and situations causing accumulation of potentially toxic levels of misfolded proteins in the ER, a condition known as ER stress. During evolution, eukaryotic lineages have acquired multiple UPR effectors, which have increased the pliability of cytoprotective responses to physiological and environmental stresses. The ER-associated protein kinase and ribonuclease IRE1 is a UPR effector that is conserved from yeast to metazoans and plants.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development.

View Article and Find Full Text PDF

Auxin induces rapid gene expression changes throughout root development. How auxin-induced transcriptional responses relate to changes in protein abundance is not well characterized. This report identifies early auxin responsive proteins in roots at 30 min and 2 h after hormone treatment using a quantitative proteomics approach in which 3,514 proteins were reliably quantified.

View Article and Find Full Text PDF

Unlabelled: Macroautophagy/autophagy is a conserved process in eukaryotes that contributes to cell survival in response to stress. Previously, we found that endoplasmic reticulum (ER) stress induces autophagy in plants via a pathway dependent upon AT5G24360/IRE1B (INOSITOL REQUIRING 1-1), an ER membrane-anchored factor involved in the splicing of AT1G42990/BZIP60 (basic leucine zipper protein 60) mRNA. IRE1B is a dual protein kinase and ribonuclease, and here we determined the involvement of the protein kinase catalytic domain, nucleotide binding and RNase domains of IRE1B in activating autophagy.

View Article and Find Full Text PDF

Autophagy is important for degradation and recycling of cytoplasmic materials in all eukaryotes and is often triggered by environmental stress. How autophagy is activated in plants under different environmental conditions is still poorly understood. Our recent studies show that induction of autophagy by different abiotic stress conditions can occur via either a TOR-dependent or -independent pathway, depending on the stress.

View Article and Find Full Text PDF

Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR), which is activated in response to nutrients and in turn upregulates cell growth and translation and inhibits autophagy.

View Article and Find Full Text PDF

Autophagy is a key process for degradation and recycling of proteins or organelles in eukaryotes. Autophagy in plants has been shown to function in stress responses, pathogen immunity, and senescence, while a basal level of autophagy plays a housekeeping role in cells. Upon activation of autophagy, vesicles termed autophagosomes are formed to deliver proteins or organelles to the vacuole for degradation.

View Article and Find Full Text PDF

Autophagy is a major pathway for the delivery of proteins or organelles to be degraded in the vacuole and recycled. It can be induced by abiotic stresses, senescence, and pathogen infection. Recent research has shown that autophagy is activated by ER stress.

View Article and Find Full Text PDF

Background: Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes.

Methodology/principal Findings: Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp.

View Article and Find Full Text PDF