Publications by authors named "Yunsun Nam"

Chemical modification of RNAs is important for posttranscriptional gene regulation. The METTL3-METTL14 complex generates most -methyladenosine (mA) modifications in messenger RNAs (mRNAs), and dysregulated methyltransferase expression has been linked to cancers. Here we show that a changed sequence context for mA can promote oncogenesis.

View Article and Find Full Text PDF

MicroRNAs modulate most protein-coding genes, and many are regulated during maturation. Chemical modifications of primary transcripts containing microRNAs have been implicated in altering Microprocessor processing efficiency, a key initiating endonucleolytic step performed by Drosha and DGCR8. METTL3-METTL14 produces N -methyladenosine which is the most common methylation for mRNAs.

View Article and Find Full Text PDF

pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing.

View Article and Find Full Text PDF

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns.

View Article and Find Full Text PDF

pre-mRNA splicing is a critical feature of eukaryotic gene expression. Many eukaryotes use cis-splicing to remove intronic sequences from pre-mRNAs. In addition to cis-splicing, many organisms use trans-splicing to replace the 5' ends of mRNAs with a non-coding spliced-leader RNA.

View Article and Find Full Text PDF

Chemical modification of RNAs is important for post-transcriptional gene regulation. The METTL3-METTL14 complex generates most -methyladenosine (m A) modifications in mRNAs, and dysregulated methyltransferase expression has been linked to numerous cancers. Here we show that changes in m A modification location can impact oncogenesis.

View Article and Find Full Text PDF

Specific, regulated modification of RNAs is important for proper gene expression. tRNAs are rich with various chemical modifications that affect their stability and function. 7-Methylguanosine (mG) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth.

View Article and Find Full Text PDF

MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8.

View Article and Find Full Text PDF
Article Synopsis
  • METTL16 is identified as an RNA methyltransferase that deposits N-methyladenosine (mA) in some messenger RNA transcripts, but its broader role in methylating various transcripts like METTL3 and METTL14 is still uncertain.
  • The research shows that METTL16 has both methyltransferase activity-dependent and -independent functions, particularly in gene regulation, acting as an mA writer in the nucleus and promoting translation in the cytosol without relying on mA.
  • METTL16 interacts directly with initiation factors and ribosomal RNA to enhance translation, impacting over 4,000 mRNA transcripts, and is crucial for the development of hepatocellular carcinoma, highlighting its important dual functions in both methyl
View Article and Find Full Text PDF

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage.

View Article and Find Full Text PDF

DDX17, a DEAD-box ATPase, is a multifunctional helicase important for various RNA functions, including microRNA maturation. Key questions for DDX17 include how it recognizes target RNAs and influences their structures, as well as how its ATPase activity may be regulated. Through crystal structures and biochemical assays, we show the ability of the core catalytic domains of DDX17 to recognize specific sequences in target RNAs.

View Article and Find Full Text PDF

In two recent publications in Molecular Cell,Boulias et al. (2019) and Sendinc et al. (2019) use complementary approaches to map mAm modification sites transcriptome-wide and demonstrate that mAm can repress translation while increasing the stability of a subset of low-abundance transcripts.

View Article and Find Full Text PDF

The original version of this Article contained an error in Fig. 1. In panel d, the model on the right of the panel was incorrectly labeled '+Heme', and should have read '- Heme'.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM) is an essential metabolite that acts as a cofactor for most methylation events in the cell. The N-methyladenosine (mA) methyltransferase METTL16 controls SAM homeostasis by regulating the abundance of SAM synthetase MAT2A mRNA in response to changing intracellular SAM levels. Here we present crystal structures of METTL16 in complex with MAT2A RNA hairpins to uncover critical molecular mechanisms underlying the regulated activity of METTL16.

View Article and Find Full Text PDF

LIN28 is an RNA-binding protein that regulates the maturation of the let-7 family of microRNAs by bipartite interactions with let-7 precursors through its two distinct cold shock and zinc-knuckle domains. Through inhibition of let-7 biogenesis, LIN28 functions as a pluripotency factor, as well as a driver of tumorigenesis. Here, we report a fluorescence polarization assay to identify small-molecule inhibitors for both domains of LIN28 involved in let-7 interactions.

View Article and Find Full Text PDF

MicroRNAs regulate the expression of many proteins and require specific maturation steps. Primary microRNA transcripts (pri-miRs) are cleaved by Microprocessor, a complex containing the RNase Drosha and its partner protein, DGCR8. Although DGCR8 is known to bind heme, the molecular role of heme in pri-miR processing is unknown.

View Article and Find Full Text PDF

LIN28 is an RNA binding protein that plays crucial roles in pluripotency, glucose metabolism, tissue regeneration, and tumorigenesis. LIN28 binds to the let-7 primary and precursor microRNAs through bipartite recognition and induces degradation of let-7 precursors (pre-let-7) by promoting oligouridylation by terminal uridylyltransferases (TUTases). Here, we report that the zinc knuckle domain (ZKD) of mouse LIN28 recruits TUT4 to initiate the oligouridylation of let-7 precursors.

View Article and Find Full Text PDF

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells.

View Article and Find Full Text PDF

N(6)-methyladenosine (m(6)A) is a prevalent, reversible chemical modification of functional RNAs and is important for central events in biology. The core m(6)A writers are Mettl3 and Mettl14, which both contain methyltransferase domains. How Mettl3 and Mettl14 cooperate to catalyze methylation of adenosines has remained elusive.

View Article and Find Full Text PDF

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.

View Article and Find Full Text PDF

Deformable elastic network (DEN) restraints have proved to be a powerful tool for refining structures from low-resolution X-ray crystallographic data sets. Unfortunately, optimal refinement using DEN restraints requires extensive calculations and is often hindered by a lack of access to sufficient computational resources. The DEN web service presented here intends to provide structural biologists with access to resources for running computationally intensive DEN refinements in parallel on the Open Science Grid, the US cyberinfrastructure.

View Article and Find Full Text PDF

The Notch intracellular domain (NICD) forms a transcriptional activation complex with the DNA-binding factor CSL and a transcriptional co-activator of the Mastermind family (MAML). The "RAM" region of NICD recruits Notch to CSL, facilitating the binding of MAML at the interface between the ankyrin (ANK) repeat domain of NICD and CSL. Here, we report the X-ray structure of a human MAML1/RAM/ANK/CSL/DNA complex, and probe changes in component dynamics upon stepwise assembly of a MAML1/NICD/CSL complex using HX-MS.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression. Among these, members of the let-7 miRNA family control many cell-fate determination genes to influence pluripotency, differentiation, and transformation. Lin28 is a specific, posttranscriptional inhibitor of let-7 biogenesis.

View Article and Find Full Text PDF

Background: The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival.

Principal Findings: We find that the activated intracellular domains of Notch1-4 (ICN1-4) all support T cell development in mice and thymic organ culture.

View Article and Find Full Text PDF

Background: The interaction between biological researchers and the bioinformatics tools they use is still hampered by incomplete interoperability between such tools. To ensure interoperability initiatives are effectively deployed, end-user applications need to be aware of, and support, best practices and standards. Here, we report on an initiative in which software developers and genome biologists came together to explore and raise awareness of these issues: BioHackathon 2009.

View Article and Find Full Text PDF