Understanding soybean (Glycine max) domestication and improvement at a genetic level is important to inform future efforts to further improve a crop that provides the world's main source of oilseed. We detect 230 selective sweeps and 162 selected copy number variants by analysis of 302 resequenced wild, landrace and improved soybean accessions at >11× depth. A genome-wide association study using these new sequences reveals associations between 10 selected regions and 9 domestication or improvement traits, and identifies 13 previously uncharacterized loci for agronomic traits including oil content, plant height and pubescence form.
View Article and Find Full Text PDFPolyploidy is a common phenomenon, particularly in plants. The soybean (Glycine max [L.] Merr.
View Article and Find Full Text PDFmiRNA genes are thought to undergo quick birth and death processes in genomes and the emergence of a MIRNA-like hairpin provides the base for functional miRNA gene formation. However, the factors affecting the formation of an active miRNA gene from a MIRNA-like hairpin within a genome remain unclear. We performed a genome-wide investigation of MIRNA-like hairpin accumulation, expression, structural changes and relationships with annotated genomic features in the paleopolyploid soybean genome.
View Article and Find Full Text PDF