Publications by authors named "Yunsheng Xia"

Normally, electrostatic-dependent mitochondria localization can cause a decrease/loss of mitochondrial membrane potential (MMP), leading to the corresponding abnormal behaviors. So, achieving subcellular organelle localization and imaging with as little interference on their physiological activity is of significance for understanding cell activity. Herein, we discover and demonstrate that "polarity" can independently act as a novel kind of target for labeling at the organelle level.

View Article and Find Full Text PDF

Understanding the photoluminescence mechanisms of carbon dots (C-dots) is of importance for both fundamental science and their corresponding applications. In this study, we verify the emitting-unit model of C-dots by an upgraded "contrastive analysis" research paradigm. Employing preparative thin-layer chromatography, we recently developed polyamide column chromatography separation techniques, and four kinds of highly correlative C-dots are obtained from a homologous sample made from -aminophenol precursors.

View Article and Find Full Text PDF

Carbon dot (C-dot) separation/purification is not only a fundamental chemical issue but also an essential precondition for revealing C-dots' true nature. To date, adequate separation of C-dots has remained an open question due to the lack of an appropriate fine separation system. Herein, we discover and reveal that polyamide chromatography can provide versatile and powerful performances for C-dot separation.

View Article and Find Full Text PDF

Choosing a good crop rotation plan helps maintain soil fertility and creates a healthy soil ecosystem. However, excessive fertilization and continuous cultivation of vegetables in a greenhouse results in secondary salinization of the soil. It remains unclear how crop rotation affects Yunnan's main place for vegetable growing in the greenhouse.

View Article and Find Full Text PDF

Wood vinegar is a high-value acidic byproduct of biomass pyrolysis used for charcoal production. It is widely used in agriculture and forestry. The adverse effects of synthetic fungicides on the environment and human health have prompted the increasing use of biofungicides as alternatives to traditional products in integrated plant disease management programs.

View Article and Find Full Text PDF

For nanocrystals (NCs) self-assembly, understanding the chemical and supramolecular interactions among building blocks is significant for both fundamental scientific interests and rational nanosuperstructure construction. However, it has remained an extreme challenge for many self-assembly systems due to the lack of appropriately quantitative approaches for the corresponding exploration. Herein, by combination of the proposed colorimetric method for cationic surfactant quantitation and all-atom simulations, we manage to present a clear chemical picture for the thiol molecules modulated self-assembly of gold nanorods (GNRs), one of the earliest and most convenient methods for the fabrication of freestanding GNR self-assemblies.

View Article and Find Full Text PDF

Wood vinegar, a by-product of charcoal biomass pyrolysis, has been used as a biofungicide in plant disease management because of its antimicrobial properties. However, the physiological and biochemical mechanisms through which wood vinegar alleviates biotic stress are poorly understood. In this study, pot experiments were conducted to investigate the resistance and regulation mechanism of wood vinegar prepared from different raw materials (ZM) and from a single raw material (SM) in controlling tomato ( "Bonny Best") Fusarium wilt at different concentrations (0.

View Article and Find Full Text PDF

To explore the safe utilization technology of farmland polluted by the heavy metals cadmium (Cd) and lead (Pb) and to realize the safe production of agricultural products, a pot experiment was conducted to investigate the effects of two soil passivators and five foliar inhibitors on Cd and Cd-accumulation and quality of lettuce with low Pb and Cd accumulation (KCW). The results showed that different control measures had different effects on the soil pH value of lettuce, and the application of 45 g·mbiochar-based passivator had the most significant difference in improving the soil pH value, which was increased by 0.8 units compared with that in CK.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) play key roles in enhancing plant tolerance to heavy metals, and iron (Fe) compounds can reduce the bioavailability of arsenic (As) in soil, thereby alleviating As toxicity. However, there have been limited studies of the synergistic antioxidant mechanisms of AMF () and Fe compounds in the alleviation of As toxicity on leaves of maize ( L.) with low and moderate As contamination.

View Article and Find Full Text PDF

Supraparticles (SPs) are of great importance in both fundamental and applied studies due to their emerging collective properties, synergistic effects, and various applications. Metal sulfide nanomaterials are of vital importance in biomedicine, catalysis, battery materials, and other fields. Herein, an decomposition-assembly strategy for the versatile fabrication of metal sulfide SPs is developed.

View Article and Find Full Text PDF

Exploring the etiology of liver injury is critical to fundamental science and precise treatment, which has not yet been achieved by molecule imaging techniques. Herein, we manage to conquer this challenge by spatiotemporally monitoring oxidative stress processes using the proposed unit-emitting carbon dots (UE-C-dots) as fluorescent probes. We discover and reveal that the UE-C-dots can specifically determine hypochlorous acid (HClO) molecules, one of the important reactive oxygen/nitrogen species (ROS/RNS) in liver injury, by an excited state oxidation mechanism.

View Article and Find Full Text PDF

To investigate the dominant plants in ecological restoration of tin mining areas, field investigations were conducted in a tin tailings area in Lailishan, Yunnan Provence, and 15 dominant plants and corresponding rhizosphere soils were collected. The plant root mycorrhizal infection rate; the copper (Cu), cadmium (Cd), arsenic (As), nickel (Ni), lead (Pb), and tin (Sn) contents; and the chemical properties of the rhizosphere tailings were determined. The transfer and enrichment coefficients of six heavy metals were calculated for each of the 15 plants to comprehensively evaluate the application potential of native plants.

View Article and Find Full Text PDF

Agricultural arsenic (As, CAS. No. 7440-38-2) over the issue of pollution has been related to people's livelihood, security and moderate use of As contaminated soil is an important aspect of contaminated soil remediation.

View Article and Find Full Text PDF

Development of intelligent and multifunctional nanoparticle for the diagnosis and treatment of cancer has drawn great attention recently. In this work, we design a smart two-dimensional (2D) supraparticle for tumor targeted magnetic resonance imaging (MRI)/photothermal imaging (PTI) and chemo/photothermal therapy (PTT). The nanoparticle consists of a manganese dioxide (MnO) nanosheet coated gold nanorod (GNR) core (loading with chemotherapeutics doxorubicin (DOX)), and cancer cell membrane shell (denoted as CM-DOX-GMNPs).

View Article and Find Full Text PDF

Phage therapy is an alternative approach to overcome the problem of multidrug-resistant bacteria. Here, a novel bacteriophage AhyVDH1, which infects Aeromonas hydrophila 4572, was isolated and its morphology, one-step growth curve, lytic activity, stability under various conditions, and genome were investigated. Transmission electron microscopy revealed that AhyVDH1 has an icosahedral head 49 nm in diameter and a contractile tail 127 nm in length, suggesting that it belongs to the family Myoviridae.

View Article and Find Full Text PDF

A plasmonic photocatalyst of AgBr/BiPO/g-CN was prepared. X-ray powder diffraction, Scanning electron microscope, Transmission electron microscopy, Fourier infrared spectroscopy, Ultraviolet Visible diffuse reflectance spectroscopy and photoluminescence emission spectra have been employed to determine the structure, morphology and optical property of the as-prepared AgBr/BiPO/g-CN composite and analysis the reasons for improving photocatalytic efficiency. The optimal doping ratio of AgBr was 10 wt% by degrading 20 mg/L of Reactive Blue 19 (RB19) under visible light (λ > 420 nm), and 10 wt%AgBr/BiPO/g-CN degraded 20 mg/L of RB19 to 2.

View Article and Find Full Text PDF

We herein report a (sacrificial template-ligand exchange) integration strategy to fabricate near-infrared optically active CuS nanocrystals (NCs) and further investigate their interactions with cells, autophagy-induced tumor cell death, and photothermal ablation application potential. Starting from oleic acid capped Cu@CuO NCs, water-soluble and chiral d- and l-cysteine modified CuS (denoted as d-CuS and l-CuS, respectively) NCs have been reliably obtained by ligand exchange (from oleic acid to cysteine) accompanied by the core chemical transformation (from Cu@CuO to CuS). The resulting two enantiomeric CuS NCs have almost identical physicochemical properties including size, morphology, chemical composition, extinction band, peroxidase mimicking activity, and photothermal stability.

View Article and Find Full Text PDF

We herein present a reactive site regulation strategy for fabricating well-defined Janus and core@shell gold nanorod-CuS dual metal-semiconductor plasmonic supraparticles. In addition to enhanced photothermal efficiency and photostability, the nanohybrids possess synergetic photo-thermal and chemical dynamic therapy and corresponding application potential.

View Article and Find Full Text PDF

The exploration of magnetic resonance imaging (MRI) agents possessing excellent performances and high biosafety is of great importance for both fundamental science research and biomedical applications. In this study, we present that monodisperse FeO supraparticles (SPs) can act as -weighted MRI agents, which not only possess a distinct off-on MRI switch in the tumor microenvironment but also are readily excreted from living bodies due to its quasi-amorphous structure and hierarchical topology design. First, the FeO SPs have a surface-to-volume ratio obviously smaller than that of their building blocks by means of self-assembly processes, which, on the one hand, causes a rather low relaxivity (0.

View Article and Find Full Text PDF

We herein demonstrate robust two-dimensional (2D) UFO-shaped plasmonic supraparticles made of gold nanoparticles (AuNPs) and MnO nanosheets (denoted as AMNS-SPs) for directly monitoring cell membrane vesiculation at the single-particle level. Because the decorated MnO nanosheets are ultrathin (4.2 nm) and have large diameters (230 nm), they are flexible enough for deformation and folding for parceling of the AuNPs during the endocytosis process.

View Article and Find Full Text PDF

This review (with 261 refs.) summarizes the progress that has been made in the field of in-vitro diagnosis using carbonaceous nanoparticles (CNPs). Signal readout is mostly based on fluorometry, electrochemistry and colorimetry.

View Article and Find Full Text PDF

The design, catalytic process, and property study of nanozymes are of importance for both fundamental research and application demand. Here, the peroxidase-mimicking properties of a series of carbon dots (C-dots) was systematically investigated and they were found to be probably closer to their natural counterparts, as compared to the known corresponding nanozymes. Firstly, four kinds of metal-free and surface-modulated C-dots were bottom-up fabricated using glucose, α-cyclodextrin (CD), β-CD, and γ-CD as precursors, respectively, and their formation processes, structures, as well as surface chemistry were investigated.

View Article and Find Full Text PDF

Exiguobacterium is a versatile genus with potential in industry and agriculture. No bacteriophage that infects Exiguobacterium has been reported, despite its potential impacts on the utilization of Exiguobacterium. E.

View Article and Find Full Text PDF

Growth and productivity of rice is negatively affected by soil salinity. However, some salt-tolerant bacteria improve the health of plants under saline stress. In this study, 305 bacteria were isolated from paddy soil in Taoyuan, China.

View Article and Find Full Text PDF

In this study, we investigated the effects of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and Diversispora spurcum on the growth, antioxidant physiology, and uptake of phosphorus (P), sulfur (S), lead (Pb), zinc (Zn), cadmium (Cd), and arsenic (As) by maize (Zea mays L.) grown in heavy metal-polluted soils though a potted plant experiment. F.

View Article and Find Full Text PDF