Publications by authors named "Yunrui Li"

Nuclear Magnetic Resonance (NMR) spectroscopy is essential for revealing molecular structure, electronic environment, and dynamics. Accurate NMR shift prediction allows researchers to validate structures by comparing predicted and observed shifts. While Machine Learning (ML) has improved one-dimensional (1D) NMR shift prediction, predicting 2D NMR remains challenging due to limited annotated data.

View Article and Find Full Text PDF

The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO (for OER) to enhance both ORR and OER performances.

View Article and Find Full Text PDF

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

The rational design of metal oxide catalysts with enhanced oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance is crucial for the practical application of aqueous rechargeable zinc-air batteries (a-r-ZABs). Precisely regulating the electronic environment of metal-oxygen (M-O) active species is critical yet challenging for improving their activity and stability toward OER and ORR. Herein, we propose an atomic-level bilateral regulation strategy by introducing atomically dispersed Ga for continuously tuning the electronic environment of Ru-O and Mn-O in the Ga/MnRuO catalyst.

View Article and Find Full Text PDF
Article Synopsis
  • Radiative cooling (RC) sunscreen is a new, energy-efficient cooling technology that helps keep skin comfortable and protects against UV radiation.
  • It has low UV transmissivity (4.86%), high solar reflectivity (90.19%), and high mid-infrared emissivity (92.09%), allowing it to cool skin by 2.3-6.1 °C better than regular sunscreens.
  • The RC sunscreen offers good durability and performance, with benefits like UV stability, water resistance, and biocompatibility, suggesting it could be a strong contender in the sunscreen market.
View Article and Find Full Text PDF

Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep convolutional neural networks. It uses those features to estimate the inter-frame motions of objects. We evaluate the ability of optical flow to quantify the spontaneous flows of microtubule (MT)-based active nematics under different labeling conditions, and compare its performance to particle image velocimetry (PIV).

View Article and Find Full Text PDF

Electrocatalytic reduction of CO into C products of high economic value provides a promising strategy to realize resourceful CO utilization. Rational design and construct dual sites to realize the CO protonation and C-C coupling to unravel their structure-performance correlation is of great significance in catalysing electrochemical CO reduction reactions. Herein, Cu-Cu dual sites with different site distance coordinated by halogen at the first-shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations.

View Article and Find Full Text PDF

Surface strain engineering has proven to be an efficient strategy to enhance catalytic properties of platinum (Pt)-based catalysts for electrooxidation reactions. Herein, the S-doped PtMn concave cubes (CNCs) enclosed with high index facets (HIFs) and regulatable surface strain are successfully fabricated by two steps hydrothermal method. The S element with electrophilic property can modify the near-surface of PtMn nanocrystals, altering the electronic structure of Pt to effectively regulate the adsorption/desorption of intermediates in the ethanol electrooxidation reaction (EOR).

View Article and Find Full Text PDF

Due to the specificity, high efficiency, and gentleness of enzyme catalysis, the industrial utilization of enzymes has attracted more and more attention. Immobilized enzymes can be recovered/recycled easily compared to their free forms. The primary benefit of immobilization is protection of the enzymes from harsh environmental conditions (e.

View Article and Find Full Text PDF

Ultralong carbon nanotubes (CNTs) are considered as promising candidates for many cutting-edge applications. However, restricted by the extremely low yields of ultralong CNTs, their practical applications can hardly be realized. Therefore, new methodologies shall be developed to boost the growth efficiency of ultralong CNTs and alleviate their areal density decay at the macroscale level.

View Article and Find Full Text PDF

Active nematics are dense systems of rodlike particles that consume energy to drive motion at the level of the individual particles. They exist in natural systems like biological tissues and artificial materials such as suspensions of self-propelled colloidal particles or synthetic microswimmers. Active nematics have attracted significant attention in recent years due to their spectacular nonequilibrium collective spatiotemporal dynamics, which may enable applications in fields such as robotics, drug delivery, and materials science.

View Article and Find Full Text PDF

Radiative cooling is a zero-energy technology that enables subambient cooling by emitting heat into outer space (~3 K) through the atmospheric transparent windows. However, existing designs typically focus only on the main atmospheric transparent window (8-13 μm) and ignore another window (16-25 μm), under-exploiting their cooling potential. Here, we show a dual-selective radiative cooling design based on a scalable thermal emitter, which exhibits selective emission in both atmospheric transparent windows and reflection in the remaining mid-infrared and solar wavebands.

View Article and Find Full Text PDF

Optimizing the interatomic distance of dual sites to realize C-C bond breaking of ethanol is critical for the commercialization of direct ethanol fuel cells. Herein, the concept of holding long-range dual sites is proposed to weaken the reaction barrier of C-C cleavage during the ethanol oxidation reaction (EOR). The obtained long-range Rh-O-Pt dual sites achieve a high current density of 7.

View Article and Find Full Text PDF

The conventional double cropping system of winter wheat and summer maize (WW-SUM) in the North China Plain (NCP) consumes a large amount of water and chemical fertilizer, threatening the sustainable development of agriculture in this region. This study was based on a three-year field experiment of different cropping systems (2H1Y-two harvests in one year; 3H2Y-three harvests in two years; and 1H1Y-one harvest in one year). The 2H1Y system had three irrigation-fertilization practices (FP-farmer's practice; RI-reduced input; and WQ-Wuqiao pattern in Wuqiao County, Hebei Province).

View Article and Find Full Text PDF

Herein, driven by the need of highly-efficient DNAzyme-amplified detection strategy, a novel 3D DNAzyme motor was designed as a biosensor platform for realizing sensitive detection of target DNA. The 3D DNAzyme motor was composed of target-activated DNAzyme nanowires and substrates H1-Fc that co-immobilized on Au@FeO nanoparticles (Au@FeONP) surface, possessing high local concentration of DNA reactants and shortened distance between DNAzyme and substrates for enhancing electrochemical signal. Compared with traditional DNAzyme-powered machines, the target-activated DNAzyme nanowires of 3D DNAzyme motor had greater flexibility and more powerful cleavage capability without troublesome sequence optimization, which overcame the space limitation and simultaneously interacted with adjacent and distant substrates H1-Fc to output a large amount of cleavage products with high signal response.

View Article and Find Full Text PDF

Constructing monodispersed metal sites in heterocatalysis is an efficient strategy to boost their catalytic performance. Herein, a new strategy using monodispersed metal sites to tailor Pt-based nanocatalysts is addressed by engineering unconventional p-d orbital hybridization. Thus, monodispersed Ga on Pt Mn nanocrystals (Ga-O-Pt Mn) with high-indexed facets was constructed for the first time to drive ethanol electrooxidation reaction (EOR).

View Article and Find Full Text PDF

In this work, a DNA three-way junction (TWJ) with multiple recognition regions was intelligently engineered, which could be applied as an unconfined DNA walker with a rapid walking speed and high sensitivity for electrochemical detection of microRNA (miRNA-182-5p). Once the target miRNA was presented, the hairpins on TWJ could be successively opened to form an annular DNA walker, which could walk on the entire scope of the electrode surface without the confine for the length of DNA walker legs compared with the traditional DNA walker, greatly improving the walking efficiency. In addition, this DNA walker with multirecognition segments could obviously increase the local concentration of recognition sites, which significantly enhanced the detection speed and sensitivity.

View Article and Find Full Text PDF

Modifying the surface active sites of Pt-based catalysts at the atomic level is of great significance to enhance the electrooxidation of methanol molecules. Herein, efficient active site assembly strategies are proposed, precisely, aimed at building high-performance electrocatalysts. Serving as proof-of-concept examples, both instances of Pt nanowires surface doping isolated Ru atoms (Ru/Pt NWs) and Ru nanoparticles supported on Pt nanowires (Ru@Pt NWs) are specially designed to optimize the catalytic performance of methanol oxidation reaction (MOR).

View Article and Find Full Text PDF

Construction of an efficient bifunctional electrocatalyst through a rational interface-engineering strategy to optimize the adsorption energy of H* and OH* species at the atomic/molecular level is of great importance for water splitting. Although conventional NiFe layered double hydroxide (LDH) shows excellent performance for alkaline oxygen evolution reactions (OERs), it shows extremely poor activity toward hydrogen evolution reactions (HERs) due to weak hydrogen adsorption and sluggish kinetics. In this work, integration of sub-nanoscale Ru species with NiFe LDH can dramatically enhance the adsorption energy of H* and improve their HER kinetics.

View Article and Find Full Text PDF

Herein, by directly introducing mismatched reactant DNA, high-reactivity and high-threshold enzyme-free target recycling amplification (EFTRA) is explored. The developed high-efficiency EFTRA (HEEFTRA) was applied as a programmable DNA signal converter, possessing higher conversion efficiency than the traditional one with perfect complement owing to the more negative reaction standard free energy (Δ). Once traces of input target miRNA interact with the mismatched reactant DNA, amounts of ferrocene (Fc)-labeled output DNA could be converted the EFTRA.

View Article and Find Full Text PDF

In this work, a novel DNA circle capture probe with multiple target recognition domains was designed to develop an electrochemical biosensor for ultrasensitive detection of microRNA-21 (miRNA-21) and miRNA-155 simultaneously. The DNA circle capture probe was anchored at the top of the tetrahedron DNA nanostructure (TDN) to simultaneously recognize miRNA-21 and miRNA-155 through multiple target recognition domains under the assistance of Helper strands, which could trigger mimetic proximity ligation assay (mPLA) for capturing the beacons ferrocene (Fc)-A1 and methylene blue (MB)-A2 to achieve multiple miRNAs detection. In this way, the local reaction concentration could be enhanced and avoid the interference of various capture probes compared with the traditional multiplexed electrochemical biosensor with the use of different capture probes, resulting in the significantly improvement of detection sensitivity.

View Article and Find Full Text PDF

Here, a bifunctional DNAzyme nanodevice (BFDN) with two detection paths toward the same target was intelligently designed and applied to construct a ratiometric electrochemical biosensor for highly reliable and sensitive mercury ion (Hg) detection. In the presence of the target Hg, the T-Hg-T pair could actuate the preassembled DNA four-branched nanostructure (DNA-4B) without cleavage capability transform to the BFDN with strong cleavage capability for triggering two synchronous Hg detection paths, including a "signal-off" path (1) that consisted of a cascade DNAzyme cleavage reaction to dramatically decrease the ferrocene (Fc) response and a "signal-on" path (2) that accomplished the capture of significant amounts of methylene blue (MB) on the electrode surface under the assistant of DNAzyme2 (D2) in BFDN. This strategy not only effectively avoided the false positive signal compared with traditional single paths, but also proposed a new ratiometric method to successfully circumvent the deficiency that existed in previous ratiometric electrochemical biosensors.

View Article and Find Full Text PDF

Cutaneous malignant melanoma (CMM) is one of the most dangerous types of skin cancer. The prognosis of CMM patients with ulcers, regional lymph node metastasis or organ metastasis is poor. In this process, resistance to anoikis is a critical step in tumor cell metastasis.

View Article and Find Full Text PDF

In this work, the highly efficient target recycling-based netlike Y-shaped DNA (Y-DNA), which regulated the electrocatalysis of FeO@CeO-Pt nanoparticles (FeO@CeO-PtNPs) toward methylene blue (MB) for signal amplification, was developed to prepare a sensitive DNA biosensor for detecting the DNA associated with oral cancer. Specifically, with the help of highly efficient enzyme-assisted target recycling (EATR) amplification strategy, one target DNA input was converted to corresponding plenty of DNA strands S1-FeO@CeO-Pt and S2-MB output, which could be employed to interact with HP2 immobilized on the electrode surface to form stable netlike Y-DNA without any waste of recycling products. Meanwhile, the formation of netlike Y-DNA could regulate electrocatalytic efficiency of FeO@CeO-PtNPs, inducing the proximity of FeO@CeO-PtNPs to MB and significantly enhancing electrochemical signal.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqqm1a6tga15o0damjd8p9kos97ip5fek): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once