Background: The SARS-CoV-2 Omicron variant, since its initial detection, has rapidly spread across the globe, becoming the dominant strain. It is important to study the immune response of SARS-CoV-2 Omicron variant due to its remarkable ability to escape the majority of existing SARS-CoV-2 neutralizing antibodies. The surge in SARS-CoV-2 Omicron infections among most Chinese residents by the end of 2022 provides a unique opportunity to understand immune system's response to Omicron in populations with limited exposure to prior SARS-CoV-2 variants.
View Article and Find Full Text PDFCytotoxic CD8 T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated.
View Article and Find Full Text PDFObjective: Here, we explored the phenotype and function of MAIT cells in the peripheral blood of patients with HSP.
Methods: Blood samples from HSP patients and HDs were assessed by flow cytometry and single-cell RNA sequencing to analyze the proportion, phenotype, and function of MAIT cells. Th-cytokines in the serum of HSP patients were analyzed by CBA.
The NLRP1 inflammasome functions as canonical cytosolic sensor in response to intracellular infections and is implicated in auto-inflammatory diseases. But the regulation and signal transduction mechanisms of NLRP1 are incompletely understood. Here, we show that the T60 variant of CARD8, but not the canonical T48 isoform, negatively regulates the NLRP1 inflammasome activation by directly interacting with the receptor molecule NLRP1 and inhibiting inflammasome assembly.
View Article and Find Full Text PDFMajor diseases, such as cancer and COVID-19, are frightening global health problems, and sustained action is necessary to develop vaccines. Here, for the first time, ethoxy acetalated dextran nanoparticles (Ace-Dex-NPs) are functionalized with 9-N-(4H-thieno[3,2-c]chromene-2-carbamoyl)-Siaα2-3Galβ1-4GlcNAc ( Sia-LacNAc) targeting macrophages as a universal vaccine design platform. First, azide-containing oxidized Ace-Dex-NPs are synthesized.
View Article and Find Full Text PDFThe receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the major target for antibody therapeutics. Shark-derived variable domains of new antigen receptors (VNARs) are the smallest antibody fragments with flexible paratopes that can recognize protein motifs inaccessible to classical antibodies. This study reported four VNARs binders (JM-2, JM-5, JM-17, and JM-18) isolated from immunized with SARS-CoV-2 RBD.
View Article and Find Full Text PDFSARS-CoV-2 variants with adaptive mutations have continued to emerge, causing fresh waves of infection even amongst vaccinated population. The development of broad-spectrum antivirals is thus urgently needed. We previously developed two hetero-bivalent nanobodies (Nbs), aRBD-2-5 and aRBD-2-7, with potent neutralization activity against the wild-type (WT) Wuhan isolated SARS-CoV-2, by fusing aRBD-2 with aRBD-5 and aRBD-7, respectively.
View Article and Find Full Text PDFVaricella and herpes zoster are mild symptoms-associated diseases caused by varicella-zoster virus (VZV). They often cause severe complications (disseminated zoster), leading to death when diagnoses and treatment are delayed. However, most commercial VZV diagnostic tests have low sensitivity, and the most sensitive tests are unevenly available worldwide.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2021
A detrimental role of the receptor for the advanced glycation end product (RAGE) has been identified in the immune response, and various pathological conditions and its V and C1 domains in the extracellular region of RAGE are believed to be the main ligand-binding domains. Consequently, specific inhibitors targeting those domains could be of clinical value in fighting against the pathological condition associated with RAGE over-activation. Single-domain antibodies, also called nanobodies (Nbs), are antibody fragments engineered from the heavy-chain only antibodies found in camelids, which offer a range of advantages in therapy.
View Article and Find Full Text PDFCell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VH/nanobody (Nb) from immunized alpacas.
View Article and Find Full Text PDFNeurons are terminally-differentiated cells that generally develop from neuronal stem cells stimulated by various neurotrophic factors such as NGF, BDNF, NT3, and NT-4. Neurotrophic factors have multiple functions for neurons, including enabling neuronal development, growth, and protection. Glucagon-like peptide-1 (GLP-1) is an intestinal-secreted incretin that enhances cellular glucose up-take to decrease blood sugar levels.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2020
The nucleocapsid (N) protein is an important antigen for coronavirus, which participate in RNA package and virus particle release. In this study, we expressed the N protein of SARS-CoV-2 and characterized its biochemical properties. Static light scattering, size exclusive chromatography, and small-angle X-ray scattering (SAXS) showed that the purified N protein is largely a dimer in solution.
View Article and Find Full Text PDFBacterial vaginosis (BV) is a common type of vaginal inflammation caused by a proliferation of pathogenic bacteria, among which Mobiluncus curtisii. In our previous studies on M. curtisii genome, we identified the presence of a genomic fragment encoding a 25 kDa pore-forming toxin, the CAMP factor, which is known to be involved in the synergistic lysis of erythrocytes namely CAMP reaction.
View Article and Find Full Text PDFStroke is the major cause of adult disability and the second or third leading cause of death in developed countries. The treatment options for stroke (thrombolysis or thrombectomy) are restricted to a small subset of patients with acute ischemic stroke because of the limited time for an efficacious response and the strict criteria applied to minimize the risk of cerebral hemorrhage. Attempts to develop new treatments, such as neuroprotectants, for acute ischemic stroke have been costly and time-consuming and to date have yielded disappointing results.
View Article and Find Full Text PDFBackground: Malignant tumors are the single most common cause of death and the mortality rate of ovarian cancer is the highest among gynecological disorders. The excision of benign tumors is generally followed by complete recovery; however, the activity of cancer cells often results in rapid proliferation even after the tumor has been excised completely. Thus, clinical treatment must be supplemented by auxiliary chemotherapy or radiotherapy.
View Article and Find Full Text PDFIn recent studies, sulforaphane (SFN) has been seen to demonstrate antioxidant and anti-tumor activities as well as potent chemopreventive action against cancer. The present study investigates the anti-proliferation (using MTT assay, SFN demonstrated cytotoxic activity against GBM 8401 cell with IC(50) values at 35.52 μM) and induced apoptosis of SFN 24-h treatment in the cells of human brain malignant glioma GBM 8401 cells.
View Article and Find Full Text PDF