Electrocatalytic carbonylation of CO and CHOH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd and Pd surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation.
View Article and Find Full Text PDFThe carbonylation reaction is an effective way to introduce CO or other carbonyl groups into organic compounds, and widely used in the preparation of aldehydes, ketones, amides, and esters. The replacement of conventional reaction approaches by greener electrochemical methods is appealing with great synthetic potential as well as inherent safety, owing to the avoidance of external oxidants or reductants and a more facile control in product selectivity. In this minireview, we give a summary of the recent development of carbonylation reactions via the electrochemical approach.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2021
The size modulation of catalyst particles represents a useful dimension to tune catalytic performances by impacting not only their surface areas but also local electronic structures. It, however, has remained inadequately explored and poorly elucidated. Here, we report the interesting size-dependent selectivity of electrochemical CO reduction on In O nanocrystals.
View Article and Find Full Text PDF