Halogens favorably contributes to the drug potency and metabolic stability via electrostatic interactions. Herein, the halogen effects on the reactivity of the halogenated 2,2,2-trifluoroacetophenones as serine-targeting covalent warheads were investigated. Our results showed that introducing halogen atoms, especially Cl or Br, into the phenyl scaffold would influence the electron density around the ring, which led to different time-dependent inhibition response to the target serine hydrolase (hCES1A).
View Article and Find Full Text PDFHuman carboxylesterase 2A (hCES2A) is an important endoplasmic reticulum (ER)-resident enzyme that is responsible for the hydrolytic metabolism or activation of numerous ester-bearing drugs and environmental toxins. The previously reported hCES2A fluorogenic substrates suffer from limited emission wavelength, low specificity, and poor localization accuracy, thereby greatly limiting the in situ functional imaging of hCES2A and drug discovery. Herein, a rational ligand design strategy was adopted to construct a highly specific near-infrared (NIR) substrate for hCES2A.
View Article and Find Full Text PDFFenofibrate, a marketed peroxisome proliferator-activated receptor- (PPAR) agonist, has been widely used for treating severe hypertriglyceridemia and mixed dyslipidemia. As a canonical prodrug, fenofibrate can be rapidly hydrolyzed to release the active metabolite (fenofibric acid) in vivo, but the crucial enzyme(s) responsible for fenofibrate hydrolysis and the related hydrolytic kinetics have not been well-investigated. This study aimed to assign the key organs and crucial enzymes involved in fenofibrate hydrolysis in humans, as well as reveal the impact of fenofibrate hydrolysis on its non-PPAR-mediated biologic activities.
View Article and Find Full Text PDFHuman carboxylesterase 2A (hCES2A), the most abundant carboxylesterase in the human gut, plays a crucial role in the metabolic clearance and activation of various ester-bearing drugs, environmental toxins and carcinogens. Inhibition of intestinal hCES2A can alleviate irinotecan-induced gut toxicity and modulate the oral bioavailability of hCES2A-substrate drugs. Bysspectin A, a natural product isolated from the endophytic fungus Byssochlamys spectabilis, has been identified as a highly selective hCES2A inhibitor.
View Article and Find Full Text PDFObesity is a growing global health problem and is associated with increased prevalence of many metabolic disorders, including diabetes, hypertension and cardiovascular disease. Pancreatic lipase (PL) has been validated as a key target for developing anti-obesity agents, owing to its crucial role in lipid digestion and absorption. In the past few decades, porcine PL (pPL) is always used as the enzyme source for screening PL inhibitors, which generate numerous pPL inhibitors but the potent inhibitors against human PL (hPL) are rarely reported.
View Article and Find Full Text PDFMuscle synergies have been proposed as functional modules to simplify the complexity of body motor control; however, their neural implementation is still unclear. Converging evidence suggests that output projections of the spinal premotor interneurons (PreM-INs) underlie the formation of muscle synergies, but they exhibit a substantial variation across neurons and exclude standard models assuming a small number of unitary "modules" in the spinal cord. Here we compared neural network models for muscle synergies to seek a biologically plausible model that reconciles previous clinical and electrophysiological findings.
View Article and Find Full Text PDFPancreatic lipase (PL) inhibitor therapy has been validated as an efficacious way for preventing and treating obesity and overweight. In the past few decades, porcine PL (pPL) is widely used as the enzyme source for screening the PL inhibitors, which generates a wide range of pPL inhibitors. By contrast, the efficacious inhibitors against human PL (hPL) are rarely reported.
View Article and Find Full Text PDFBile salt hydrolases (BSHs), a group of cysteine-hydrolases produced by gut microbes, play a crucial role in the hydrolysis of glycine- or taurine-conjugated bile acids and have been validated as key targets to modulate bile acid metabolism. This study aims to discover one or more efficacious inhibitors against a BSH produced by (lsBSH) from natural products and to characterize the mechanism of the newly identified BSH inhibitor(s). Following screening of the inhibition potentials of more than 100 natural compounds against lsBSH, amentoflavone (AMF), a naturally occurring biflavone isolated from various medicinal plants, was discovered to be an efficacious BSH inhibitor (IC = 0.
View Article and Find Full Text PDFMethylophiopogonanone A (MOA) is an abundant homoisoflavonoid in the Chinese herb Ophiopogonis Radix. Recent investigations revealed that MOA inhibited several human cytochrome P450 enzymes (CYPs) and stimulated OATP1B1. However, the inhibitory effects of MOA on phase II drug-metabolizing enzymes, such as human UDP-glucuronosyltransferases (hUGTs), have not been well investigated.
View Article and Find Full Text PDFMammalian carboxylesterases (CES), the key members of the serine hydrolase superfamily, hydrolyze a wide range of endogenous substances and xenobiotics bearing ester or amide bond(s). In humans, most of identified CES are segregated into the CES1A and CES2A subfamilies. Strong inhibition on human CES (including hCES1A and hCES2A) may modulate pharmacokinetic profiles of CES-substrate drugs, thereby changing the pharmacological and toxicological responses of these drugs.
View Article and Find Full Text PDFHuman carboxylesterase 2 (CES2), one of the most abundant hydrolases distributed in the small intestine, has been validated as a key therapeutic target to ameliorate the intestinal toxicity caused by irinotecan. This study aims to discover efficacious CES2 inhibitors from natural products and to characterize the inhibition potentials and inhibitory mechanisms of the newly identified CES2 inhibitors. Following high-throughput screening and evaluation of the inhibition potency of more than 100 natural products against CES2, it was found that the biflavones isolated from displayed extremely potent CES2 inhibition activities and high specificity over CES1 (>1000-fold).
View Article and Find Full Text PDFInteracting with objects in our environment usually leads to audible noise. Brain responses to such self-initiated sounds have been shown to be attenuated, in particular the so-called N1 component measured with electroencephalography (EEG). This attenuation has been proposed to be the effect of an internal forward model that allows for cancellation of the sensory consequences of a motor command.
View Article and Find Full Text PDFPaeonone A (1), a unique nonanortriterpenoid, and a new octanortriterpenoid, paeonone B (2), were isolated from the roots of Paeonia lactiflora, together with a known analogue, palbinone (3). Paeonone A (1) is the first example of naturally occurring nonanortriterpenoid with a diketo acid group. Extensive NMR and HRESIMS experiments were applied to identify the structures of 1 and 2, and their absolute configurations were solved by single-crystal X-ray diffraction and ECD data.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
February 2021
According to human carboxylesterase 2(hCE2) inhibitors reported in the literature, the pharmacophore model of hCE2 inhibitors was developed using HipHop module in Discovery Studio 2016. The optimized pharmacophore model, which was validated by test set, contained two hydrophobic, one hydrogen bond acceptor, and one aromatic ring features. Using the pharmacophore model established, 5 potential hCE2 inhibitors(CS-1,CS-2,CS-3,CS-6 and CS-8) were screened from 20 compounds isolated from the roots of Paeonia lactiflora, which were further confirmed in vitro, with the IC_(50) values of 5.
View Article and Find Full Text PDFHuman carboxylesterase 2 (hCES2A) is a key target to ameliorate the intestinal toxicity triggered by irinotecan that causes severe diarrhea in 50%-80% of patients receiving this anticancer agent. Herbal medicines are frequently used for the prevention and treatment of the intestinal toxicity of irinotecan, but it is very hard to find strong hCES2A inhibitors from herbal medicines in an efficient way. Herein, an integrated strategy via combination of chemical profiling, docking-based virtual screening and fluorescence-based high-throughput inhibitor screening assays was utilized.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
January 2021
Background And Objective: Rapamycin and its semi-synthetic analogues (rapalogues) are frequently used in combination with other prescribed medications in clinical settings. Although the inhibitory effects of rapalogues on cytochrome P450 enzymes (CYPs) have been well examined, the inhibition potentials of rapalogues on human esterases have not been investigated. Herein, the inhibition potentials and inhibitory mechanisms of six marketed rapalogues on human esterases are investigated.
View Article and Find Full Text PDFHuman Carboxylesterase 2A (hCES2A), one of the most important serine hydrolases, plays crucial roles in the hydrolysis and the metabolic activation of a wide range of esters and amides. Increasing evidence has indicated that potent inhibition on intestinal hCES2A may reduce the excessive accumulation of SN-38 (the hydrolytic metabolite of irinotecan with potent cytotoxicity) in the intestinal tract and thereby alleviate the intestinal toxicity triggered by irinotecan. In this study, more than sixty natural alkaloids have been collected and their inhibitory effects against hCES2A are assayed using a fluorescence-based biochemical assay.
View Article and Find Full Text PDFHuman carboxylesterase 2 (hCES2A), one of the major serine hydrolases distributed in the small intestine, plays a crucial role in hydrolysis of ester-bearing drugs. Accumulating evidence has indicated that hCES2A inhibitor therapy can modulate the pharmacokinetic and toxicological profiles of some important hCES2A-substrate drugs, such as the anticancer agent CPT-11. Herein, a series of indanone-chalcone hybrids are designed and synthesized to find potent and highly selective hCES2A inhibitors.
View Article and Find Full Text PDFIn a continuing search for potential inhibitors against human carboxylesterases 1A1 and 2A1 (hCES1A1 and hCES2A1), an EtOAc extract of the roots of showed strong hCES inhibition activity. Bioassay-guided fractionation led to the isolation of 26 terpenoids including 12 new ones (-, -, and ). Among these, sesquiterpenoids and , monoterpenoids , , and -, and triterpenoids -, , and - contributed to the hCES2A1 inhibition, in the IC range of 1.
View Article and Find Full Text PDFHuman carboxylesterase 1A1 (hCES1A) is a promising target for the treatment of hyperlipidemia and obesity-associated metabolic diseases. To date, the highly specific and efficacious hCES1A inhibitors are rarely reported. This study aims to find potent and highly specific hCES1A inhibitors from herbs, and to investigate their inhibitory mechanisms.
View Article and Find Full Text PDFMammalian carboxylesterases (CES) are key enzymes that participate in the hydrolytic metabolism of various endogenous and exogenous substrates. Human carboxylesterase 2A (hCES2A), mainly distributed in the small intestine and colon, plays a significant role in the hydrolysis of many drugs. In this study, 3-arylisoquinolones 3 h [3-(4-(benzyloxy)-3-methoxyphenyl)-7,8-dimethoxyisoquinolin-1(2H)-one] and 4 a [3-(4-(benzyloxy)-3-methoxyphenyl)-4-bromo-7,8-dimethoxyisoquinolin-1(2H)-one] were found to have potent inhibitory effects on hCES2A (IC =0.
View Article and Find Full Text PDFBackground: Human carboxylesterases (hCES) are key serine hydrolases responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters. Although it has been reported that some ginsenosides can modulate the activities of various enzymes, the inhibitory effects of ginsenosides on hCES have not been well-investigated.
Methods: In this study, more than 20 ginsenosides were collected and their inhibitory effects on hCES1A and hCES2A were assayed using the highly specific fluorescent probe substrates for each isoenzyme.
Psoraleae Fructus (the dried fruits of Psoralea corylifolia), one of the most frequently used Chinese herbs in Asian countries, has a variety of biological activities. In clinical settings, Psoraleae Fructus or Psoraleae Fructus-related herbal medicines frequently have been used in combination with a number of therapeutic drugs for the treatment of various human diseases, such as leukoderma, rheumatism and dysentery. The use of Psoraleae Fructus in combination with drugs has aroused concern of the potential risks of herb-drug interactions (HDI) or herb-endobiotic interactions (HEI).
View Article and Find Full Text PDFHuman carboxylesterase 2 (hCE2) is one of the most abundant esterases distributed in human small intestine and colon, which participates in the hydrolysis of a variety of ester-bearing drugs and thereby affects the efficacy of these drugs. Herein, a new compound (23o) with a novel skeleton of dihydrooxazolo[2,3-]isoquinolinium has been discovered with strong inhibition on hCE2 (IC = 1.19 μM, = 0.
View Article and Find Full Text PDFClopidogrel, a clinically used antiplatelet agent, can be readily hydrolyzed by human carboxylesterase 1A (CES1A) to release an inactive metabolite clopidogrel carboxylic acid (CCA). In this study, clopidogrel was used as a tool substrate to investigate the interspecies variation of clopidogrel hydrolysis in hepatic microsomes from various mammals including human and six laboratory animals (such as mouse, rat, rabbit, beagle dog, minipig and cynomolgus monkey). The results demonstrated that clopidogrel could be hydrolyzed into CCA by all tested hepatic microsomes from human or other mammals, but the hydrolytic rates greatly varied among species.
View Article and Find Full Text PDF