Publications by authors named "Yunqi Cui"

Background: As the overall survival (OS) of patients with multiple myeloma (MM) improves, the incidence of second primary malignancy (SPM) in long-term complications increases. However, there are limited data regarding MM as a SPM. Therefore, this study aimed to determine the time trends in the incidence of MM, as well as the incidence and survival of patients with MM as the SPM.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) is a type of hematologic malignancies caused by BCR-ABL chimeric oncogene. Resistance to tyrosine kinase inhibitors (TKIs) leads to the progression of CML into advanced stages. Selinexor is a small molecule inhibitor that targets a nuclear transporter called Exportin 1.

View Article and Find Full Text PDF

Background-aim: Patients with multiple myeloma (MM) relapse with extramedullary disease (EMD) exhibits an aggressive disease course and poor prognostic features. Myelomatous effusion (ME) is a rare subtype of EMD.

Methods: In this retrospective study, we analyzed the baseline characteristics and therapies of 14 EMD patients relapse with ME and 21 EMD patients relapse without ME.

View Article and Find Full Text PDF

Myelomatous effusion (ME) is a rare manifestation of extramedullary multiple myeloma (MM) with limited therapeutic options and poor outcomes. The molecular mechanisms underlying ME are incompletely understood. We profiled transcriptomes of bone marrow, peripheral blood (PB), and pleural effusion/ascites from 3 patients with ME using single-cell RNA sequencing analysis.

View Article and Find Full Text PDF

Objective: Long non-coding RNAs (lncRNAs) are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in extramedullary disease of multiple myeloma (EMD), we analyzed the expression profile of lncRNAs in EMD.

Methods: Three pairs of EMD patients and their intramedullary MM cells were screened by microarray first.

View Article and Find Full Text PDF

Zeolite SAPO-34 has been widely used in the industry because of its special pore structure and wide distribution of acid sites in the pore channel. However, traditional SAPO-34 with a small pore size suffers from carbon deposition and deactivation in catalytic reactions, and its inability to catalytically convert bulky organic molecules limits its industrial application. Meanwhile, impurities of SAPO-5, which have weak acidity leading to rapid catalyst deactivation, appear in SAPO-34 zeolite.

View Article and Find Full Text PDF

In recent years, as a result of the large-scale use of stainless steel bars in production and life, people's demand for stainless steel bars has increased. However, existing research information on stainless steel bars is scant, especially the lack of research on the mechanical properties of duplex stainless steel bars and the bonding properties of duplex stainless steel bars to concrete. Therefore, this paper selects 177 duplex stainless steel bars with different diameters for room temperature tensile test, and then uses mathematical methods to provide suggestions for the values of their mechanical properties.

View Article and Find Full Text PDF

We carried out density functional theory simulations to examine the stability and CO oxidation activity of single Cu atoms supported on CeO (111). Both the strong binding energy and high activation energy for Cu single atom diffusion indicate a high stability of the Cu /CeO single-atom catalyst. Electronic structure analysis verifies the formation of Cu cation due to electron transfer.

View Article and Find Full Text PDF

There has been an upsurge of green reductants for the preparation of graphene materials taking consideration of human health and the environment in recent years. In this paper, reduced graphene oxides (RGOs) were prepared by chemical reduction of graphene oxide (GO) with three green reductants, L-ascorbic acid (L-AA), D-glucose (D-GLC) and tea polyphenol (TP), and comparatively characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectra, Raman spectra and electrical conductivity analysis. Results showed that all these three reductants were effective to remove oxygen-containing functional groups in GO and restore the electrical conductivity of the obtained RGO.

View Article and Find Full Text PDF