BMC Bioinformatics
December 2018
Background: Biomedical semantic indexing is important for information retrieval and many other research fields in bioinformatics. It annotates biomedical citations with Medical Subject Headings. In face of unbalanced category distribution in the training data, sampling methods are difficult to apply for semantic indexing task.
View Article and Find Full Text PDFThis study presents a model predictive control approach for seizure reduction in a computational model of epilepsy. The differential dynamic programming (DDP) algorithm is implemented in a model predictive fashion to optimize a controller for suppressing seizures in a chaotic oscillator model. The chaotic oscillator model uses proportional-integral (PI) controller to represent the internal control mechanism that maintains stable neural activity in a healthy brain.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2018
We present a trajectory optimization approach to reinforcement learning in continuous state and action spaces, called probabilistic differential dynamic programming (PDDP). Our method represents systems dynamics using Gaussian processes (GPs), and performs local dynamic programming iteratively around a nominal trajectory in Gaussian belief spaces. Different from model-based policy search methods, PDDP does not require a policy parameterization and learns a time-varying control policy via successive forward-backward sweeps.
View Article and Find Full Text PDFThis study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller.
View Article and Find Full Text PDFIn view of the fact that there are disadvantages in that the class number must be determined in advance, the value of learning rates are hard to fix, etc., when using traditional competitive neural networks (CNNs) in electronic noses (E-noses), an optimized CNN method was presented. The optimized CNN was established on the basis of the optimum class number of samples according to the changes of the Davies and Bouldin (DB) value and it could increase, divide, or delete neurons in order to adjust the number of neurons automatically.
View Article and Find Full Text PDF